We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

On Multiple Zeta Values and their q-analogues

Formal Metadata

Title
On Multiple Zeta Values and their q-analogues
Title of Series
Number of Parts
28
Author
Contributors
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Multiple zeta values are real numbers which appeared in depth one and two in the work of L. Euler in the Eighteenth century. They first appear as a whole in the work of J. Ecalle in 1981, as infinite nested sums. A systematic study starts one decade later with M. Hoffman, D. Zagier and M. Kontsevich, with multiple polylogarithms and iterated integral representation as a main tool. After a brief historical account, I'll explain how a quasi-shuffle compatible definition (by no means unique) can be given through Connes-Kreimer's Hopf-algebraic renormalization when the nested sum diverges. I'll also give an account of the more delicate renormalization of shuffle relations. Finally, I'll introduce the Ohno-Okuda-Zudilin model of q-analogues for multiple zeta values, and describe the algebraic structure which governs it.