We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

4/4 The Frobenius Structure Conjecture for Log Calabi-Yau Varieties

Formal Metadata

Title
4/4 The Frobenius Structure Conjecture for Log Calabi-Yau Varieties
Subtitle
Scattering diagram, comparison with Gross-Hacking-Keel-Kontsevich, applications to cluster algebras, applications to moduli spaces of Calabi-Yau pairs
Title of Series
Part Number
4
Number of Parts
4
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
4/4 - Scattering diagram, comparison with Gross-Hacking-Keel-Kontsevich, applications to cluster algebras, applications to moduli spaces of Calabi-Yau pairs. --- We show that the naive counts of rational curves in an affine log Calabi-Yau variety U, containing an open algebraic torus, determine in a surprisingly simple way, a family of log Calabi-Yau varieties, as the spectrum of a commutative associative algebra equipped with a multilinear form. This is directly inspired by a very similar conjecture of Gross-Hacking-Keel in mirror symmetry, known as the Frobenius structure conjecture. Although the statement involves only elementary algebraic geometry, our proof employs Berkovich non-archimedean analytic methods. We construct the structure constants of the algebra via counting non-archimedean analytic disks in the analytification of U. We establish various properties of the counting, notably deformation invariance, symmetry, gluing formula and convexity. In the special case when U is a Fock-Goncharov skew-symmetric X-cluster variety, we prove that our algebra generalizes, and in particular gives a direct geometric construction of, the mirror algebra of Gross-Hacking-Keel-Kontsevich. The comparison is proved via a canonical scattering diagram defined by counting infinitesimal non-archimedean analytic cylinders, without using the Kontsevich-Soibelman algorithm. Several combinatorial conjectures of GHKK follow readily from the geometric description. This is joint work with S. Keel; the reference is arXiv:1908.09861. If time permits, I will mention another application of our theory to the study of the moduli space of polarized Calabi-Yau pairs, in a work in progress with P. Hacking and S. Keel. Here is a plan for each session of the mini-course: 1) Motivation and ideas from mirror symmetry, main results. 2) Skeletal curves: a key notion in the theory. 3) Naive counts, tail conditions and deformation invariance. 4) Scattering diagram, comparison with Gross-Hacking-Keel-Kontsevich, applications to cluster algebras, applications to moduli spaces of Calabi-Yau pairs.