We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

2/3 Algebraic K-theory and Trace Methods

Formal Metadata

Title
2/3 Algebraic K-theory and Trace Methods
Title of Series
Number of Parts
29
Author
Contributors
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Algebraic K-theory is an invariant of rings and ring spectra which illustrates a fascinating interplay between algebra and topology. Defined using topological tools, this invariant has important applications to algebraic geometry, number theory, and geometric topology. One fruitful approach to studying algebraic K-theory is via trace maps, relating algebraic K-theory to (topological) Hochschild homology, and (topological) cyclic homology. In this mini-course I will introduce algebraic K-theory and related Hochschild invariants, and discuss recent advances in this area. Topics will include cyclotomic spectra, computations of the algebraic K-theory of rings, and equivariant analogues of Hochschild invariants.