We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Simulation of NO2 concentration over the Stuttgart metropolitan area

Formal Metadata

Title
Simulation of NO2 concentration over the Stuttgart metropolitan area
Title of Series
Number of Parts
2
Author
License
CC Attribution - ShareAlike 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor and the work or content is shared also in adapted form only under the conditions of this
Identifiers
Publisher
Release Date
Language
Producer
Production Year2020
Production PlaceStuttgart, Germany

Content Metadata

Subject Area
Genre
Abstract
Air pollution is one of the major challenges in urban areas. It can have a major impact on human health and society and is currently a subject of several litigations at European courts. Information on the level of air pollution is based on near surface measurements, which are often irregularly distributed along the main traffic roads and provide almost no information about the residential areas and office districts in the cities. To further enhance the process understanding and give scientific support to decision makers, we developed a prototype for an air quality forecasting system (AQFS) within the EU demonstration project “Open Forecast”. For AQFS, the Weather Research and Forecasting model together with its coupled chemistry component (WRF-Chem) is applied for the Stuttgart metropolitan area in Germany. Three model domains from 1.25 km down to a turbulence permitting resolution of 50 m were used and a single layer urban canopy model was active in all domains. As demonstration case study the 21 January 2019 was selected which was a heavy polluted day with observed PM10 concentrations exceeding 50 µg m-3. Our results show that the model is capable to reasonably simulate the diurnal cycle of surface fluxes and 2-m temperatures as well as evolution of the stable and shallow boundary layer typically occurring in wintertime in Stuttgart. The simulated fields of particulates with a diameter of less than 10 µm (PM10) and Nitrogen dioxide (NO2) allow a clear statement about the most heavily polluted areas apart from the irregularly distributed measurement sites. Together with information about the vertical distribution of PM10 and NO2 from the model, AQFS will serve as a valuable tool for air quality forecast and has the potential of being applied to other cities around the world.
Keywords