We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

30 Golden Rules of Deep Learning Performance

Formal Metadata

Title
30 Golden Rules of Deep Learning Performance
Title of Series
Number of Parts
130
Author
License
CC Attribution - NonCommercial - ShareAlike 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor and the work or content is shared also in adapted form only under the conditions of this
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
“Watching paint dry is faster than training my deep learning model.” “If only I had ten more GPUs, I could train my model in time.” “I want to run my model on a cheap smartphone, but it’s probably too heavy and slow.” If this sounds like you, then you might like this talk. Exploring the landscape of training and inference, we cover a myriad of tricks that step-by-step improve the efficiency of most deep learning pipelines, reduce wasted hardware cycles, and make them cost-effective. We identify and fix inefficiencies across different parts of the pipeline, including data preparation, reading and augmentation, training, and inference. With a data-driven approach and easy-to-replicate TensorFlow examples, finely tune the knobs of your deep learning pipeline to get the best out of your hardware. And with the money you save, demand a raise!