We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Practice: Machine learning for earth observation

Formal Metadata

Title
Practice: Machine learning for earth observation
Subtitle
& Mapping the "Area of Applicability" of spatial prediction models
Title of Series
Number of Parts
27
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language
Producer
Production Year2020
Production PlaceWicc, Wageningen International Congress Centre B.V.

Content Metadata

Subject Area
Genre
Abstract
This tutorial has two major aims: The first one is to show the general workflow of how land cover classifications (or similar tasks) based on satellite data can be performed in R using machine learning algorithms. The second important aim is to show how to assess the area to which a spatial prediction model can be applied ("Area of applicability", AOA). This is relevant because in spatial predictive mapping, models are often applied to make predictions far beyond sampling locations (i.e. field observarions used to map a variable even on a global scale), where new locations might considerably differ in their environmental properties. However, areas in the predictor space without support of training data are problematic. The model has no knowledge about these environments and predictions for such areas have to be considered highly uncertain.