We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

1/4 On the Mathematical Theory of Black Holes

Formal Metadata

Title
1/4 On the Mathematical Theory of Black Holes
Title of Series
Part Number
1
Number of Parts
4
Author
Contributors
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The gravitational waves detected by LIGO were produced in the final faze of the inward spiraling of two black holes before they collided to produce a more massive black hole. The experiment is entirely consistent with the so called Final State Conjecture of General Relativity according to which generic solutions of the Einstein vacuum equations can be described, asymptotically, by a finite number of Kerr solutions moving away from each other. Though the conjecture is so very easy to formulate and happens to be validated by both astrophysical observations as well as numerical experiments, it is far beyond our current mathematical understanding. In fact even the far simpler and fundamental question of the stability of one Kerr black hole remains wide open. In my lectures I will address the issue of stability as well as other aspects the mathematical theory of black holes such as rigidity of black holes and the problem of collapse. The rigidity conjecture asserts that all stationary solutions the Einstein vacuum equations must be Kerr black holes while the problem of collapse addresses the issue of how black holes form in the first place from regular initial conditions. Recent advances on all these problems were made possible by a remarkable combination of geometric and analytic techniques which I will try to outline in my lectures.