We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Monitoring strawberries

Formal Metadata

Title
Monitoring strawberries
Subtitle
Building observability for indoor farming
Title of Series
Number of Parts
490
Author
License
CC Attribution 2.0 Belgium:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
According to the United Nations, 2.5 billion more people will be living in cities by 2050. This trend has caused indoor farming to draw a lot of attention and effort in recent years, in an attempt to scale the production of highly nutritious, healthy food inside cities. Over the past 3 years, Agricool has recycled 20 industrial containers into farms that grow strawberries, herbs and salads, in the very heart of cities, and without any pesticide. These urban farms are currently operated in Paris and Dubaï. Operating a fleet of indoor farms presents a diverse set of observability challenges. At the most traditional end of the observability spectrum, engineers rely on devops tools to operate computers, microservices, and an IoT infrastructure embedded inside the farms. On the other hand, living organisms like strawberry plants draw their own observability requirements, such as disease detection, physiological measurements, nutrient absorption, water analysis, or exposition rate to pollinating bumblebees. The purpose of this talk is to highlight observability challenges and best practices that are specific to indoor farming, and to illustrate them through the learnings that were made at Agricool when building observability pipelines.