We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The Space Complexity of Inner Product Filters

Formal Metadata

Title
The Space Complexity of Inner Product Filters
Title of Series
Number of Parts
25
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Motivated by the problem of filtering candidate pairs in inner product similarity joins we study the following inner product estimation problem: Given parameters d∈ℕ, α>β≥0 and unit vectors x,y∈ ℝ^d consider the task of distinguishing between the cases ⟨x,y⟩≤β and ⟨x,y⟩≥α where ⟨x,y⟩ = ∑_{i=1}^d x_i y_i is the inner product of vectors x and y. The goal is to distinguish these cases based on information on each vector encoded independently in a bit string of the shortest length possible. In contrast to much work on compressing vectors using randomized dimensionality reduction, we seek to solve the problem deterministically, with no probability of error. Inner product estimation can be solved in general via estimating ⟨x,y⟩ with an additive error bounded by ε = α - β. We show that d log₂ (√{1-β}/ε) ± Θ(d) bits of information about each vector is necessary and sufficient. Our upper bound is constructive and improves a known upper bound of d log₂(1/ε) + O(d) by up to a factor of 2 when β is close to 1. The lower bound holds even in a stronger model where one of the vectors is known exactly, and an arbitrary estimation function is allowed.