We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Resurgence for superconductors

Formal Metadata

Title
Resurgence for superconductors
Title of Series
Number of Parts
20
Author
Contributors
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
One of the most important non-perturbative effects in Nature is the energy gap of superconductors, which is exponentially small in the coupling constant. A natural question is whether this effect can be incorporated in the theory of resurgence. In this talk I will argue that this is the case. More precisely, I conjecture that the perturbative series for the ground state energy of a superconductor is factorially divergent, and its leading Borel singularity corresponds to the superconducting gap. In the case of the attractive Gaudin-Yang model (a superconductor in one dimension), I develop techniques that make it possible to calculate the exact perturbative series of the ground state energy up to very high order, providing a non-trivial test of thisconjecture. For superconductors in three dimensions, evidence for this conjecture can be given by using diagrammatic methods. We also argue that the leading Borel singularity is of the renormalon type, associated to factorially divergent subdiagrams.
Keywords