We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Diffraction Data in Context

Formal Metadata

Title
Diffraction Data in Context
Subtitle
Metadata approaches
Title of Series
Number of Parts
22
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date2015
LanguageEnglish

Content Metadata

Subject Area
Genre
Abstract
Diffraction experiments and the results arising from them must often sit in a given scientific context - e.g. in chemical crystallography, they are often performed as part of a study concerned with synthesising and characterising new compounds. The context for an experiment, i.e. why it has been performed, is often lost - particularly in the case where data is published on its own. I will present approaches not only to ascribing metadata to the results of crystallographic experiments, but also to the general chemistry leading up to them. The first stages of work to build a model to support this have been published - http://www.jcheminf.com/content/5/1/52. I will go on to discuss recent work in two projects: (1) a collaboration with five big pharma companies, instrument manufacturers, electronic lab notebook vendors and the Royal Society of Chemistry to derive metadata for capturing the 'process' of performing experiments; and (2) a project (https://blog.soton.ac.uk/cream/) aimed at using metadata actively in the process of performing research, as opposed to purely for archival purposes. I will conclude with insights as to how the approaches taken in assigning metadata in these projects are important to consider when archiving and disseminating raw crystallographic data.
Keywords