We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Novopangea M2 tidal amplitudes in 20 myr increments

Formal Metadata

Title
Novopangea M2 tidal amplitudes in 20 myr increments
Title of Series
Number of Parts
4
Author
Contributors
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language
Producer
Production Year2019

Content Metadata

Subject Area
Genre
Abstract
The Earth is currently 180 Ma into a supercontinent cycle that began with the breakup of Pangea, and will end in around 200 – 250 Ma (Mega-annum) in the future, as the next supercontinent forms. As the continents move around the planet, they change the geometry of ocean basins, and thereby modify their resonant properties. In doing so oceans move through tidal resonance, causing the global tides to be profoundly affected. Here, we use a dedicated and established global tidal model to simulate the evolution of tides during four future supercontinent scenarios. We show that the number of tidal resonances on Earth vary between 1 and 5 in a supercontinent cycle, and that they last for no longer than 20 Ma. They occur in opening basins after about 140 – 180 Ma, an age equivalent to the Present-Day Atlantic Ocean, which is near resonance for the dominating semi-diurnal tide. They also occur when an ocean basin is closing, highlighting that in its lifetime, a large ocean basin – its history described by the Wilson cycle – may go through two resonances: one when opening and one when closing. The results further support the existence of a super-tidal cycle associated with the supercontinent cycle, and gives a deep-time proxy for global tidal energetics.
Keywords