We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Deep Transfer Learning for Land Cover Classification on Open Multispectral Satellite Imagery

Formal Metadata

Title
Deep Transfer Learning for Land Cover Classification on Open Multispectral Satellite Imagery
Title of Series
Number of Parts
295
Author
Contributors
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Automatic large-scale mapping of land cover classes facilitates applications in sustainable development, agriculture, and urban planning, and is therefore a commonly studied topic in remote sensing image processing, but typical deep learning approaches use models pre-trained on everyday image datasets like ImageNet and retrain them using only three channels (usually RGB), not fully leveraging the unique properties and spectral information of multispectral satellite images. The latest approach in our series of approaches, powered by new open satellite imagery datasets like BigEarthNet and machine learning libraries like fast.ai and eo-learn, explores the effect of pre-training convolutional neural networks on multispectral satellite imagery for country-scale land cover predictions on data for all of Slovenia in 2017.
Keywords