We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Query-Driven Learning for Next Generation Predictive Modeling and Analytics

Formale Metadaten

Titel
Query-Driven Learning for Next Generation Predictive Modeling and Analytics
Serientitel
Anzahl der Teile
155
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
As data-size is increasing exponentially, new paradigm shifts have to emerge allowing fast exploitation of data by every- body. Large-scale predictive analytics is restricted to wealthy organizations as small-scale enterprises (SMEs) struggle to compete and are inundated by the sheer monetary cost of either procuring data infrastructures or analyzing datasets over the Cloud. The aim of this work is to study mechanisms which can democratize analytics, in the sense of making them affordable, while at the same time ensuring high efficiency, scalability, and accuracy. The crux of this proposal lies in developing query-driven solutions that can be used off the Cloud thus minimizing costs. Our query-driven approach will learn and adapt on-the-fly machine learning models, based solely on query-answer interactions, which can be used for answering analytical queries. In this abstract we describe the methodology followed for the implementation and evaluation of the system designed.