We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Regularizing Conjunctive Features for Classification

Formal Metadata

Title
Regularizing Conjunctive Features for Classification
Title of Series
Number of Parts
155
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We consider the feature-generation task wherein we are given a database with entities labeled as positive and negative examples, and the goal is to find feature queries that allow for a linear separation between the two sets of examples. We focus on conjunctive feature queries, and explore two fundamental problems: (a) deciding whether separating feature queries exist (separability), and (b) generating such queries when they exist. In the approximate versions of these problems, we allow a predefined fraction of the examples to be misclassified. To restrict the complexity of the generated classifiers, we explore various ways of regularizing (i.e., imposing simplicity constraints on) them by limiting their dimension, the number of joins in feature queries, and their generalized hypertree width (ghw). Among other results, we show that the separability problem is tractable in the case of bounded ghw; yet, the generation problem is intractable, simply because the feature queries might be too large. So, we explore a third problem: classifying new entities without necessarily generating the feature queries. Interestingly, in the case of bounded ghw we can efficiently classify without ever explicitly generating the feature queries.