Simulation of the 1958 Lituya Bay mega-tsunami

Video thumbnail (Frame 0) Video thumbnail (Frame 50) Video thumbnail (Frame 775) Video thumbnail (Frame 825) Video thumbnail (Frame 875)
Video in TIB AV-Portal: Simulation of the 1958 Lituya Bay mega-tsunami

Formal Metadata

Simulation of the 1958 Lituya Bay mega-tsunami
CC Attribution - NonCommercial 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Release Date
Macías, Jorge
de la Asunción, Marc
Production Year
Production Place
Universidad deMálaga

Content Metadata

Subject Area
TS2The 1958 Lituya Bay landslide-generated mega-tsunami is simulated using the Landslide-HySEA model, a recently developed finite-volume Savage–Hutter shallow water coupled numerical model. Two factors are cru- 5 cial if the main objective of the numerical simulation is to reproduce the maximal run-up with an accurate simulation of the inundated area and a precise recreation of the known trimline of the 1958 mega-tsunami of Lituya Bay: first, the accurate reconstruction of the initial slide and then the choice 10 of a suitable coupled landslide–fluid model able to reproduce how the energy released by the landslide is transmitted to the water and then propagated. Given the numerical model, the choice of parameters appears to be a point of major importance, which leads us to perform a sensitivity analysis. 15 Based on public domain topo-bathymetric data, and on information extracted from the work of Miller (1960), an approximation of Gilbert Inlet topo-bathymetry was set up and used for the numerical simulation of the mega-event. Once optimal model parameters were set, comparisons with ob20 servational data were performed in order to validate the numerical results. In the present work, we demonstrate that a shallow water type of model is able to accurately reproduce such an extreme event as the Lituya Bay mega-tsunami. The resulting numerical simulation is one of the first successful 25 attempts (if not the first) at numerically reproducing, in detail, the main features of this event in a realistic 3-D basin geometry, where no smoothing or other stabilizing factors in the bathymetric data are applied.
Keywords Lituya Bay Tsunami Numerical simulation 3D model Landslide-HySEA model EDANYA Group

Related Material