We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A non-adiabatically driven electron in a quantum wire with spin–orbit interaction

Formal Metadata

Title
A non-adiabatically driven electron in a quantum wire with spin–orbit interaction
Title of Series
Number of Parts
63
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
An exact solution is derived for the wavefunction of an electron in a semiconductor quantum wire with spin–orbit interaction and driven by external time-dependent harmonic confining potential. The formalism allows analytical expressions for various quantities to be derived, for example spin and pseudo-spin rotations, energy and occupation probabilities for excited states. It is demonstrated how perfect spin and pseudo-spin flips can be achieved at high frequencies of the order of ω, the confining potential level spacing. By an appropriately chosen driving term, spin manipulation can be exactly performed far into the non-adiabatic regime. The implications for spin-polarized emission and spin-dependent transport are also discussed.