We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Linked Data based Multi-Omics Integration and Visualization for Cancer Decision Networks.

Formal Metadata

Title
Linked Data based Multi-Omics Integration and Visualization for Cancer Decision Networks.
Title of Series
Number of Parts
12
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Visualization of Gene Expression (GE) is a challenging task since the number of genes and their associations are diffcult to predict in various set of biological studies. GE could be used to understand tissuegene- protein relationships. Currently, Heatmaps is the standard visualization technique to depict GE data. However, Heatmaps only covers the cluster of highly dense regions. It does not provide the Interaction, Functional Annotation and pooled understanding from higher to lower expression. In the present paper, we propose a graph-based technique - based on color encoding from higher to lower expression map, along with the functional annotation. This visualization technique is highly interactive (HeatMaps are mainly static maps). The visualization system here explains the association between overlapping genes with and without tissues types. Traditional visualization techniques (viz-Heatmaps) generally explain each of the association in distinct maps. For example, overlapping genes and their interactions, based on co-expression and expression cut off are three distinct Heatmaps. We demonstrate the usability using ortholog study of GE and visualize GE using GExpressionMap. We further compare and benchmark our approach with the existing visualization techniques. It also reduces the task to cluster the expressed gene networks further to understand the over/under expression. Further, it provides the interaction based on co-expression network which itself creates co-expression clusters. GExpressionMap provides a unique graphbased visualization for GE data with their functional annotation and associated interaction among the DEGs (Differentially Expressed Genes).