We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Community consistency determines the stability transition window of power-grid nodes

Formal Metadata

Title
Community consistency determines the stability transition window of power-grid nodes
Title of Series
Number of Parts
62
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The synchrony of electric power systems is important in order to maintain a stable electricity supply. Recently, the measure basin stability was introduced to quantify a node's ability to recover its synchronization when perturbed. In this work, we focus on how basin stability depends on the coupling strength between nodes. We use the Chilean power grid as a case study. In general, basin stability goes from zero to one as coupling strength increases. However, this transition does not happen at the same value for different nodes. By understanding the transition for individual nodes, we can further characterize their role in the power-transmission dynamics. We find that nodes with an exceptionally large transition window also have a low community consistency. In other words, they are hard to classify to one community when applying a community detection algorithm. This also gives an efficient way to identify nodes with a long transition window (which is computationally time consuming). Finally, to corroborate these results, we present a stylized example network with prescribed community structures that captures the mentioned characteristics of the basin stability transition and recreates our observations.