We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The simplified self-consistent probabilities method for percolation and its application to interdependent networks

Formal Metadata

Title
The simplified self-consistent probabilities method for percolation and its application to interdependent networks
Title of Series
Number of Parts
62
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Interdependent networks in areas ranging from infrastructure to economics are ubiquitous in our society, and the study of their cascading behaviors using percolation theory has attracted much attention in recent years. To analyze the percolation phenomena of these systems, different mathematical frameworks have been proposed, including generating functions and eigenvalues, and others. These different frameworks approach phase transition behaviors from different angles and have been very successful in shaping the different quantities of interest, including critical threshold, size of the giant component, order of phase transition, and the dynamics of cascading. These methods also vary in their mathematical complexity in dealing with interdependent networks that have additional complexity in terms of the correlation among different layers of networks or links. In this work, we review a particular approach of simple, self-consistent probability equations, and we illustrate that this approach can greatly simplify the mathematical analysis for systems ranging from single-layer network to various different interdependent networks. We give an overview of the detailed framework to study the nature of the critical phase transition, the value of the critical threshold, and the size of the giant component for these different systems.