We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Magnetic structure driven by monoclinic distortions in the double perovskite Sr2YRuO6

Formal Metadata

Title
Magnetic structure driven by monoclinic distortions in the double perovskite Sr2YRuO6
Title of Series
Number of Parts
62
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The monoclinic double perovskite Sr2YRuO6 has recently gained a renewed interest in order to get a deeper insight into the exotic magnetic ground states associated with geometric frustration. Striking discrepancies between the spin order derived from the neutron diffraction refinements and the macroscopic magnetic and thermal responses is a major challenge that must be addressed. In this work, detailed neutron diffraction measurements as a function of temperature yield a completely different interpretation of the patterns. We show that at low temperatures a spin structure of the K2NiF4-type is an accessible configuration for the magnetic ground state. In the neighborhood of the magnetic transition, this configuration evolves into a canted superstructure. The deduced temperature dependence of the canting angle exhibits two closely spaced peaks, which are in excellent agreement with the double peaks in the magnetic contribution to the specific heat and in the thermal expansion coefficient. We explain these features in terms of reorientation of the net ferromagnetic moment of the noncollinear spin state, due to the local breaking of the inversion symmetry promoted by the monoclinic distortions, with structural changes acting as the driving force.