We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Localization and delocalization for strong disorder in one-dimensional continuous potentials

Formal Metadata

Title
Localization and delocalization for strong disorder in one-dimensional continuous potentials
Title of Series
Number of Parts
62
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In one-dimension and for discrete uncorrelated random potentials, such as tight binding models, all states are localized for any disorder strength. This is in contrast to continuous random potentials, where we show here that regardless of the strength of the random potential, we have delocalization in the limit where the roughness length goes to zero. This result was obtained by deriving an expression for the localization length valid for all disorder strengths. We solved a nonlinear wave equation, whose average over disorder yields the localization properties of the desired linear wave equation. Our results, not only explain the origin of the difficulty to observe localization in certain physical systems, but also show that maximum localization occurs when the roughness length is comparable to the wavelength, which is relevant to many experiments in a random medium.