We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Perverse equivariant sheaves on loop Lie algebras, and affine Springer theory

Formal Metadata

Title
Perverse equivariant sheaves on loop Lie algebras, and affine Springer theory
Title of Series
Number of Parts
23
Author
Contributors
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Let G be a connected reductive group, and let LG be the corresponding loop group. Our main goal is to construct a "perverse" t-structure on the derived category of Ad LG-equivariant sheaves on LG and to show that the affine Grothendieck-Springer sheaf belongs to its core. More precisely, we construct the t-structure on the derived category of LG-equivariant sheaves supported on bounded regular semi-simple elements of LG, and we only consider its Lie algebra analog.