We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Fully Convolutional Networks for Image Segmentation

Formal Metadata

Title
Fully Convolutional Networks for Image Segmentation
Title of Series
Number of Parts
43
Author
Contributors
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language
Production PlaceErlangen, Germany

Content Metadata

Subject Area
Genre
Abstract
Recently, a considerable advancemet in the area of Image Segmentation was achieved after state-of-the-art methods based on Fully Convolutional Networks (FCNs) were developed. The objective of Image Segmentation problem is to label every pixel in the image with the class of its enclosing object or region. This problem is extremely challenging because the method should have strong classification and localization properties at the same time. While being very complicated, image segmentation is an important problem as it has many applications in medicine, autonomous driving and other fields. In our talk, we go through theory of the recent state-of-the-art methods for image segmentation based on FCNs and present our library which aims to provide a simplified way for users to apply these methods for their own problems.