We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Modelling turbulent fluid-, thermo-, and droplet dynamics in the Leipzig Aerosol Cloud Interaction Simulator (LACIS-T)

Formal Metadata

Title
Modelling turbulent fluid-, thermo-, and droplet dynamics in the Leipzig Aerosol Cloud Interaction Simulator (LACIS-T)
Title of Series
Number of Parts
20
Author
Contributors
License
CC Attribution - NonCommercial - ShareAlike 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor and the work or content is shared also in adapted form only under the conditions of this
Identifiers
Publisher
Release Date
Language
Production PlaceLeipzig

Content Metadata

Subject Area
Genre
Abstract
The turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) is a Göttingen-type moist-air wind tunnel designed for investigating interactions between turbulence and cloud microphysics under reproducible and well defined thermo- and fluid dynamic conditions. To draw reliable conclusions from measurements at the wind tunnel it is necessary to have precise knowledge about the flow field and turbulent fluctuations of velocity, temperature, and water vapour concentration. For this reason, the flow inside the measurement section of LACIS-T is simulated with OpenFOAM, employing a Large Eddy Simulation model for turbulence. Different boundary conditions for water vapour concentration and temperature are considered and the results are compared to measurements. Furthermore, particles are tracked through the domain using a Lagrangian approach. Thereto, a suitable growth model is implemented to calculate particle/droplet growth due to the condensation of water vapour from the gas phase. Joint work with D. Niedermeier, J. Voigtländer, and F. Stratmann.