We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Long coherence times with dense trapped atomics

Formal Metadata

Title
Long coherence times with dense trapped atomics
Subtitle
Collisional narrowing and dynamical decoupling
Alternative Title
Suppressing decoherence with dense optically trapped atomic ensembles
Title of Series
Number of Parts
48
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 3.0 Germany:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Atomic ensembles have many potential applications in quantum information science. Owing to collective enhancement, working with ensembles at high densities increases the overall efficiency of quantum operations, but at the same time also increases the collision rate and markedly changes the time dynamics of a stored coherence. We study theoretically and experimentally the coherent dynamics of cold atoms under these conditions. A closed form expression for the spectral line shape is derived for discrete fluctuations in terms of the bare spectrum and the Poisson rate constant of collisions, which deviates from the canonical stochastic theory of Kubo. We measure a prolongation of the coherence times of optically trapped rubidium atoms as their density increases, a phenomenon we call collisional narrowing in analog to the well known motional narrowing effect in NMR. We explain under what circumstances collisional narrowing can be transformed into collisional broadening. On account of collisions, conventional echo techniques fail to suppress this dephasing, and multi-pulse dynamical decoupling sequences are required. We present experiments demonstrating a 20-fold increase of the coherence time when a sequence with more than 200 pi pulses is applied. We perform quantum process tomography and demonstrate that using the decoupling scheme a dense ensemble with an optical depth of >200 can be used as an atomic memory with coherence times exceeding 3 sec. Further optimization requires utilizing specific features of the collisional bath, which we measure directly.