We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Decoding algorithms for topological codes

Formal Metadata

Title
Decoding algorithms for topological codes
Title of Series
Number of Parts
48
Author
License
CC Attribution - NonCommercial - NoDerivatives 3.0 Germany:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
I will talk about the problem of decoding a topological code, that consists of identifying the optimal recovery operation given the syndrome of an error, or equivalently of inferring the most likely world-line homology given a defect configuration. I will describe a new decoding algorithm [Phys. Rev. Lett. 104 050504 arXiv:0911.0581 and arXiv:1006.1362] for Kitaev's toric code (KTC) that runs in a time proportional to the log of the number of particles, an improvement over the previously known polynomial-time decoding algorithm. This algorithm also achieves a higher threshold on the depolarizing channel. Moreover, we have recently shown that all two dimensional topological stabilizer codes can be mapped onto each other by local transformations [arXiv:1103.4606, arXiv:1107.2707]. This local mapping enables us to use any decoding algorithm suitable for one of these codes to decode other codes in the same topological phase. We illustrate this idea with the topological color code that is found to be locally equivalent to two copies of KTC and we extend it to decode the topological subsystem color code.