Merken
Bounds on achievable rates of sparse quantum codes used over the quantum erasure channel
Metadaten
Formale Metadaten
Titel  Bounds on achievable rates of sparse quantum codes used over the quantum erasure channel 
Serientitel  Second International Conference on Quantum Error Correction (QEC11) 
Autor 
Delfosse, Nicolas

Mitwirkende 
Zémar, Gilles

Lizenz 
CCNamensnennung  keine kommerzielle Nutzung  keine Bearbeitung 3.0 Deutschland: Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nichtkommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. 
DOI  10.5446/35292 
Herausgeber  University of Southern California (USC) 
Erscheinungsjahr  2011 
Sprache  Englisch 
Inhaltliche Metadaten
Fachgebiet  Informatik, Mathematik, Physik 
Abstract  We study the performance of locally decodable sparse quantum codes. The most familiar example of such a code is Kitaev’s toric code. During the last ten years, a number of different constructions of these codes appeared, for example: surfaces codes, finite geometry codes or Latin square codes. These codes are defined by stabilizer group with generators of low weight. If the stabilizer matrix has row weight m and column weight l, we talk about a (l,m) code. Our main result is an upper bound on achievable rates of stabilizer (l,m) codes, as a function of m and l. Achievable rates are rates for which decoding is possible with high probability. 