Merken

Accurate polygon search in Lucene Spatial (with performance benefits to boot!)

Zitierlink des Filmsegments
Embed Code

Für dieses Video liegen keine automatischen Analyseergebnisse vor.

Analyseergebnisse werden nur für Videos aus Technik, Architektur, Chemie, Informatik, Mathematik und Physik erstellt, bei denen dies rechtlich zulässig ist.

Metadaten

Formale Metadaten

Titel Accurate polygon search in Lucene Spatial (with performance benefits to boot!)
Serientitel FOSS4G 2014 Portland
Autor Gerard, Jeffrey
Smiley,
Lizenz CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
DOI 10.5446/31734
Herausgeber FOSS4G
Open Source Geospatial Foundation (OSGeo)
Erscheinungsjahr 2014
Sprache Englisch
Produzent FOSS4G
Open Source Geospatial Foundation (OSGeo)
Produktionsjahr 2014
Produktionsort Portland, Oregon, United States of America

Inhaltliche Metadaten

Fachgebiet Informatik
Abstract Lucene, and the NoSQL stores that leverage it, support storage and searching of polygonal records. However the spatial index implementation traditionally has returned false matches to spatial queries.We have contributed a new spatial indexing strategy to Lucene Spatial that returns fully accurate results (i.e. exact matches only).Better still, this new spatial search strategy often enables keeping a smaller index and and faster retrieval of results.I will illustrate why false matches happen -- this requires a high-level walkthrough of spatial index trees -- and real world cases where it makes a difference.Our initial workaround was to query Elasticsearch through a separate server layer that post-filters Elasticsearch results against the query shape, removing the false matches.We've now built a similar approach into Lucene Spatial itself. By virtue of living inside, this new solution can take advantage of numerous efficiencies:1. it filters away false matches before fetching their document contents;2. it uses a binary serialization that is far faster than the GeoJSON we used before;3. it optimizes the tradeoff between work done in the index tree vs. post-filtering, often resulting in a smaller index and faster querying. I will provide benchmark numbers.I'll illustrate how developers and database administrators can use this improvement in their own databases (it's easy!).
Schlagwörter Database
Search
NoSQL
Vector
Indexing
Geohash
Benchmark
Lucene
Elasticsearch
Solr

Ähnliche Filme

Loading...