Bestand wählen
Merken

GeoMesa: Distributed Spatiotemporal Analytics

Zitierlink des Filmsegments
Embed Code

Automatisierte Medienanalyse

Beta
Erkannte Entitäten
Sprachtranskript
Computeranimation
Verteiltes Dateiverwaltungssystem
Parallelrechner
Ordnungsreduktion
p-Block
Computeranimation
Automatische Indexierung
Server
Wort <Informatik>
Datenspeicherung
Digitalfilter
Computeranimation
Datenhaltung
Tabelle <Informatik>
PERM <Computer>
Graphiktablett
Computeranimation
Heegaard-Zerlegung
Netzwerktopologie
Retrievalsprache
Hash-Algorithmus
Raum-Zeit
Kurvenanpassung
Rekursivität
Automatische Handlungsplanung
Computeranimation
Kurvenanpassung
Computeranimation
Retrievalsprache
Konvexe Hülle
Temporale Logik
Attributierte Grammatik
Automatische Handlungsplanung
Computeranimation
Computeranimation
Prognoseverfahren
Analytische Zahlentheorie
Dichte <Physik>
Temporale Logik
Ereignishorizont
Computeranimation
Computeranimation
Nachbarschaft <Mathematik>
Objektverfolgung
Analytische Zahlentheorie
Schlussfolgern
Twitter <Softwareplattform>
Streaming <Kommunikationstechnik>
Ereignishorizont
Computeranimation
Nachbarschaft <Mathematik>
Auswahlaxiom
Proxy Server
Softwarewerkzeug
Kommunalität
Datenmodell
Prognostik
Web Site
Arbeitsplatzcomputer
Computeranimation
Einheit <Mathematik>
Computeranimation

Metadaten

Formale Metadaten

Titel GeoMesa: Distributed Spatiotemporal Analytics
Serientitel FOSS4G 2014 Portland
Autor Fox, Anthony
Lizenz CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
DOI 10.5446/31648
Herausgeber FOSS4G, Open Source Geospatial Foundation (OSGeo)
Erscheinungsjahr 2014
Sprache Englisch
Produzent FOSS4G
Open Source Geospatial Foundation (OSGeo)
Produktionsjahr 2014
Produktionsort Portland, Oregon, United States of America

Inhaltliche Metadaten

Fachgebiet Informatik
Abstract The rapid growth of traditional and social media, sensors, and other key web technologies has led to an equally rapid increase in the collection of spatio-temporal data. Horizontally scalable solutions provide a technically feasible and affordable solution to this problem, allowing organizations to incrementally scale their hardware in tandem with data increases.GeoMesa is an open-source distributed, spatio-temporal database built on the Accumulo column-family store. Leveraging a novel spatio-temporal indexing scheme, GeoMesa enables efficient (E)CQL queries by parallelizing execution across a distributed cloud of compute and storage resources, while adhering to Accumulo's fine-grained security policies. GeoMesa integrates with Geotools to expose the distributed capabilities in a familiar API. Geoserver plugins also enable integration via OGC standard services to a much wider range of technologies and languages, such as Leaflet, Python, UDig, and QuantumGIS. In this presentation, Anthony Fox will discuss the design of spatio-temporal indexes in distributed "NoSQL" databases, the performance characteristics and tradeoffs of the GeoMesa index, and how it can be leveraged to scale compute-intensive spatial operations across very large data sources. This discussion will detail how GeoMesa distributes data uniformly across the cloud nodes to ensure maximum parallelization of queries, and other computations. Specific computationally intensive analytics include distributed heat map generation over time, nearest neighbor queries, and spatio-temporal event prediction. He will present common analytic workflows against spatial data expressed as batch map-reduce jobs, dynamic ECQL queries, and real-time Storm topologies. Using the Global Database of Events, Language, and Tone (GDELT) dataset as a working example source, Mr. Fox will demonstrate how a completely open-source architecture stack, including GeoMesa, enables ad-hoc and real-time analytics.This presentation will be of interest to data scientists, geospatial systems developers, DevOps engineers, and users of massive Spatio-Temporal datasets.
Schlagwörter Hadoop
Accumulo
Analytics
Distributed Computation
Big Data
Cloud Computing

Ähnliche Filme

Loading...
Feedback