Crazy data: Using PostGIS to fix errors and handle difficult datasets

Zitierlink des Filmsegments
Embed Code

Für dieses Video liegen keine automatischen Analyseergebnisse vor.

Analyseergebnisse werden nur für Videos aus Technik, Architektur, Chemie, Informatik, Mathematik und Physik erstellt, bei denen dies rechtlich zulässig ist.


Formale Metadaten

Titel Crazy data: Using PostGIS to fix errors and handle difficult datasets
Serientitel FOSS4G 2014 Portland
Autor Miranda, Daniel
Lizenz CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
DOI 10.5446/31600
Herausgeber FOSS4G
Open Source Geospatial Foundation (OSGeo)
Erscheinungsjahr 2014
Sprache Englisch
Produzent FOSS4G
Open Source Geospatial Foundation (OSGeo)
Produktionsjahr 2014
Produktionsort Portland, Oregon, United States of America

Inhaltliche Metadaten

Fachgebiet Informatik
Abstract Inteligeo is a system that stores a lot of information used by the Brazilian Federal Police Forensics to fight crime, initially in the environmental arena with a later expansion to other types of crime. During the construction of the database a lot of problems appeared for which PostGIS was the key to the solution.This presentation describes problems encountered by the team while loading 850+ shapefiles into the database, linking with external databases and building 950+ views of the data.Although the content of the recipes is very technical, the general concepts will be explained in an accessible language and correlated to real world cases.Topics:*Definition of crazy data in our context*Quick recipes- Spike removal- Invalid geometry detection and fixing- Filling holes- Raster image footprints- Hammering data into correct topologies- Speeding data visualization with ST Simplify and PGSQL 9.3's materialized views- Rough georeferencing using an auxiliary table- Creating constraints*How is crazy data generated and our experience in handling each case- Large datasets- Lack of validation- Reprojection- Geometric operations- Topological errors- Imprecise definitions- Legacy databases- Bad georeferencingWe will also discuss why is handling crazy data important for the Brazilian Federal Police, our efforts in cleaning up data at the source and the implications of geographical data in general for fighting crime.
Schlagwörter PostGIS
invalid geometries
spike removal

Ähnliche Filme