Merken

A semi-automatic 2D to stereoscopic 3D image and video conversion system in a semi-automated segmentation perspective

Zitierlink des Filmsegments
Embed Code

Für dieses Video liegen keine automatischen Analyseergebnisse vor.

Analyseergebnisse werden nur für Videos aus Technik, Architektur, Chemie, Informatik, Mathematik und Physik erstellt, bei denen dies rechtlich zulässig ist.

Metadaten

Formale Metadaten

Titel A semi-automatic 2D to stereoscopic 3D image and video conversion system in a semi-automated segmentation perspective
Serientitel Stereoscopic Displays and Applications XXIV (SD&A 2013)
Teil 17
Anzahl der Teile 36
Autor Phan, Raymond
Androutsos, Dimitrios
Lizenz CC-Namensnennung - keine Bearbeitung 2.0 UK: England & Wales:
Sie dürfen das Werk in unveränderter Form zu jedem legalen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
DOI 10.5446/30591
Herausgeber IS&T Electronic Imaging (EI) Symposium
Erscheinungsjahr 2013
Sprache Englisch

Inhaltliche Metadaten

Fachgebiet Informatik
Abstract We create a system for semi-automatically converting unconstrained 2D images and videos into stereoscopic 3D. Current efforts are done automatically or manually by rotoscopers. The former prohibits user intervention, or error correction, while the latter is time consuming, requiring a large staff. Semi-automatic mixes the two, allowing for faster and accurate conversion, while decreasing time to release 3D content. User-defined strokes for the image, or over several keyframes, corresponding to a rough estimate of the scene depths are defined. After, the rest of the depths are found, creating depth maps to generate stereoscopic 3D content, and Depth Image Based Rendering is employed to generate the artificial views. Here, depth map estimation can be considered as a multi-label segmentation problem, where each class is a depth value. Optionally, for video, only the first frame can be labelled, and the strokes are propagated using a modified robust tracking algorithm. Our work combines the merits of two respected segmentation algorithms: Graph Cuts and Random Walks. The diffusion of depths from Random Walks, combined with the edge preserving properties from Graph Cuts is employed to create the best results possible. Results demonstrate good quality stereoscopic images and videos with minimal effort. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

Ähnliche Filme

Loading...