Add to Watchlist

Experimental research on DMD spatial light modulator and its multi-spectrum imaging

15 views

Citation of segment
Embed Code
Purchasing a DVD Cite video

For this video, there are no automatic analysis results.

Analysis results are only provided—where legally permissible—for videos from the realms of technology/engineering, architecture, chemistry, information technology, mathematics, and physics.

Metadata

Formal Metadata

Title Experimental research on DMD spatial light modulator and its multi-spectrum imaging
Title of Series The 8th International Symposium on Display Holography (ISDH 2009)
Part Number 41
Number of Parts 57
Author Li, Yaotang
License CC Attribution - NoDerivatives 2.0 UK: England & Wales:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
DOI 10.5446/21847
Publisher River Valley TV
Release Date 2012
Language English
Production Place Shenzhen, China

Content Metadata

Subject Area Information technology
Abstract The fabric of digital micromirror device (DMD) and its operation are presented. Based on analyzing the electronic circuits and control signals of several types of commercial DLP projectors, the circuits of the projector that relate to warm-up, inter-locked protection, UHP lamp control and testing and color wheel control and detecting are successfully separated. After having simulated these control signals by a digital logic circuit experimentally and applied them to the main control board of the projector, the DMD chip operates normally. The modulating and multi spectrum imaging properties of the modified DMD spatial light modulator are dealt with in details. A compact 4f Fourier transfer system is designed and assembled for multi spectrum coherent image read-out. As a practical use, an experimental setup for holographic stereograms is established using the modified DMD spatial modulator. The created synthetic holographic stereograms have high contrast and low noise. The fabric of digital micromirror device (DMD) and its operation are presented. Based on analyzing the electronic circuits and control signals of several types of commercial DLP projectors, the circuits of the projector that relate to warm-up, inter-locked protection, UHP lamp control and testing and color wheel control and detecting are successfully separated. After having simulated these control signals by a digital logic circuit experimentally and applied them to the main control board of the projector, the DMD chip operates normally. The modulating and multi spectrum imaging properties of the modified DMD spatial light modulator are dealt with in details.

Recommendations

Loading...
Feedback
AV-Portal 3.5.0 (cb7a58240982536f976b3fae0db2d7d34ae7e46b)

Timings

  416 ms - page object