We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

An objective method for 3D quality prediction using visual annoyance and acceptability level

Formal Metadata

Title
An objective method for 3D quality prediction using visual annoyance and acceptability level
Title of Series
Part Number
10
Number of Parts
17
Author
License
CC Attribution - NoDerivatives 2.0 UK: England & Wales:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
This study proposes a new objective metric for video quality assessment. It predicts the impact of technical quality parameters relevant to visual discomfort on human perception. The proposed metric is based on a 3-level color scale: (1) Green - not annoying, (2) Orange - annoying but acceptable, (3) Red - not acceptable. Therefore, each color category reflects viewers' judgment based on stimulus acceptability and induced visual annoyance. The boundary between the “Green" and “Orange" categories defines the visual annoyance threshold, while the boundary between the “Orange" and “Red" categories defines the acceptability threshold. Once the technical quality parameters are measured, they are compared to perceptual thresholds. Such comparison allows estimating the quality of the 3D video sequence. Besides, the proposed metric is adjustable to service or production requirements by changing the percentage of acceptability and/or visual annoyance. The performance of the metric is evaluated in a subjective experiment that uses three stereoscopic scenes. Five view asymmetries with four degradation levels were introduced into initial test content. The results demonstrate high correlations between subjective scores and objective predictions for all view asymmetries. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Keywords