We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Variation on sur information theory: categories, cohomology, entropy

Formal Metadata

Title
Variation on sur information theory: categories, cohomology, entropy
Alternative Title
alternative title of the resource
Title of Series
Part Number
13
Number of Parts
17
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
L'entropie d'une variable aléatoire discrète, introduit par Shannon et généralisé par Kolmogorov, Sinai et autres, satisfait l'identité 0=H(Y|X)-H(XY)+H(X). On verra que, si on considère une catégorie S de “observables” et un topos de Grothendieck associé à ce catégorie (les préfaisceaux sur S), l'égalité ci-dessus s'interprète au niveau cohomologique comme une condition de cocycle. Sous certaines hypothèses, l'entropie apparaît comme le générateur du premier groupe de “cohomologie de l'information”, introduit par Benenquin-Baudot l'année dernière. On parlera de cette approximation catégorique aux probabilités classiques et quantiques; quelques constructions de Gromov seront aussi mentionnés.