Merken
Mathematical modeling and multiscale simulations for vesicular release at neuronal synapses
Metadaten
Formale Metadaten
Titel  Mathematical modeling and multiscale simulations for vesicular release at neuronal synapses 
Serientitel  Les Probabilités de Demain 
Teil  09 
Anzahl der Teile  17 
Autor 
Guerrier, Claire

Lizenz 
CCNamensnennung 3.0 Unported: Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. 
DOI  10.5446/20262 
Herausgeber  Institut des Hautes Études Scientifiques (IHÉS) 
Erscheinungsjahr  2016 
Sprache  Englisch 
Inhaltliche Metadaten
Fachgebiet  Mathematik 
Abstract  Claire Guerrier  Mathematical modeling and multiscale simulations for vesicular release at neuronal synapses Synaptic microdomains are underlying fundamental and yet not completely understood functions, such as learning and memory, breathing, sleeping, and many more. Motivated by understanding and analyzing these neuronal structures, we built a model to study vesicular release at synapses. As a first step, we computed the mean time for a Brownian particle to arrive at a narrow opening defined as the small cylinder joining two tangent spheres. The method relies on Möbius conformal transformation applied to the Laplace equation. We also estimated, when the particle starts inside a boundary layer near the hole, the splitting probability to reach the hole before leaving the boundary layer, which is also expressed using a mixed boundaryvalue Laplace equation. Using these results, we developed model equations and their corresponding stochastic simulations to study vesicular release at neuronal synapses, taking into account their specific geometry. 