We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Highly-Smooth Zero-th Order Online Optimization

Formal Metadata

Title
Highly-Smooth Zero-th Order Online Optimization
Title of Series
Part Number
5
Number of Parts
10
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We consider online convex optimization with noisy zero-th order information, that is noisy function evaluations at any desired point. We focus on problems with high degrees of smoothness, such as online logistic regression. We show that as opposed to gradient-based algorithms, high-order smoothness may be used to improve estimation rates, with a precise dependence on the degree of smoothness and the dimension. In particular, we show that for infinitely differentiable functions, we recover the same dependence on sample size as gradient-based algorithms, with an extra dimension-dependent factor. This is done for convex and strongly-convex functions in constrained or global optimization (with either one point or two points noisy evaluations of the functions). Joint work with F. Bach.