We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Algorithmic and statistical perspectives of randomized sketching for ordinary least-squares

Formal Metadata

Title
Algorithmic and statistical perspectives of randomized sketching for ordinary least-squares
Title of Series
Part Number
6
Number of Parts
10
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Garvesh Raskutti - Algorithmic and statistical perspectives of randomized sketching for ordinary least-squares In large-scale data settings, randomized 'sketching' has become an increasingly popular tool. In the numerical linear algebra literature, randomized sketching based on either random projections or sub-sampling has been shown to achieve optimal worst-case error. In particular the sketched ordinary least-squares (OLS) solution and the CUR decomposition have been shown to achieve optimal approximation error bounds in a worst-case setting. However, until recently there has been limited work on consider the performance of the OLS estimator under a statistical model using statistical metrics. In this talk I present some recent results which address both the performance of sketching in the statistical setting, where we assume an underlying statistical model and show that many of the existing intuitions and results are quite different from the worst-case algorithmic setting.