We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Use Python to process 12mil events per minute and still keep it simple (Talk)

Formal Metadata

Title
Use Python to process 12mil events per minute and still keep it simple (Talk)
Title of Series
Part Number
35
Number of Parts
173
Author
License
CC Attribution - NonCommercial - ShareAlike 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor and the work or content is shared also in adapted form only under the conditions of this
Identifiers
Publisher
Release Date
Language
Production PlaceBilbao, Euskadi, Spain

Content Metadata

Subject Area
Genre
Abstract
Teodor Dima - Use Python to process 12mil events per minute and still keep it simple (Talk) Creating a large-scale event processing system can be a daunting task. Especially if you want it “stupid simple” and wrapped around each client’s needs. We built a straightforward solution for this using Python 3 and other open-source tools. Main issues to solve for a system that needs to be both performant and scalable: - handling a throughput of 1 million events per minute in a 4 cores AWS instance; - following the principle of least astonishment; - data aggregation and how Python's standard libraries and data structures can help; - failsafe and profiling mechanisms that can be applied to any Linux service in production; - addressing unexpected behaviors of Python’s Standard Library; like reading from a file while it is written; - tackling a sudden spectacular cloud instance failure; The alternative to this system would be to adopt existing technology stacks that might be too general, add more complexity, bloat, costs and which need extensive work to solve your specific problem. Moreover, our approach resulted in over 85% drop on hardware utilisation.
Keywords