We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Ink-Dependent n-Factors for the Yule-Nielsen Modified Spectral Neugebauer Model

Formal Metadata

Title
Ink-Dependent n-Factors for the Yule-Nielsen Modified Spectral Neugebauer Model
Title of Series
Part Number
13
Number of Parts
43
Author
License
CC Attribution - NoDerivatives 2.0 UK: England & Wales:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language
Production PlaceJoensuu, Finland

Content Metadata

Subject Area
Genre
Abstract
Different inks may have different mechanical and/or optical properties. Existing Yule-Nielsen modified Neugebauer spectral prediction models assume however that the inks forming a color halftone behave similarly, i.e. that a single n-factor can model the lateral propagation of light within the paper as well as non-uniformities of the ink dot thickness profiles. However, if the inks have very different optical or mechanical properties, each ink may be separately modeled with its specific n-factor. In order to predict the reflection spectrum of such color halftones, we extend the ink spreading enhanced Yule-Nielsen modified spectral Neugebauer (EYNSN) model by calculating for each halftone an optimal n-factor as an average of the ink specific n-factors weighted by a parabolic function of the ink surface coverages. We compare the prediction accuracies of the standard EYNSN model where each halftone is predicted by making use of one global n-factor with the predictions accuracies of the extended EYNSN model where each halftone is predicted with its corresponding optimal n-factor derived from the individual ink-specific n-factors. For inks having very different optical and/or mechanical properties, we observe an improvement of the prediction accuracies.
Keywords