We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Entropy, information and order in soft matter

Formal Metadata

Title
Entropy, information and order in soft matter
Title of Series
Number of Parts
5
Author
License
CC Attribution - NonCommercial - NoDerivatives 3.0 Germany:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date2015
LanguageEnglish

Content Metadata

Subject Area
Genre
Abstract
Entropy, information, and order are important concepts in many fields, relevant for materials to machines, for biology to econophysics. Entropy is typically associated with disorder; yet, the counterintuitive notion that a thermodynamic system of hard particles (colloids) might - due solely to entropy - spontaneously assemble from a fluid phase into an ordered crystal was first predicted in the mid-20th century. First demonstrated for rods, and then spheres, the ordering of colloids by entropy maximization upon crowding is now well established. In recent years, surprising discoveries of ordered entropic colloidal crystals of extraordinary structural complexity have been predicted by computer simulation and observed in the laboratory. These findings, presented in this talk, demonstrate that entropy alone can produce order and complexity beyond that previously imagined, and that, in situations where other interactions are also present, the role of entropy in producing order may be greatly underestimated. Glotzer discusses how new statistical mechanical principles learned from recent findings can be used to design shapes that promote long-range entropic order.
Keywords