We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Opening lecture with Ursula Keller

Formal Metadata

Title
Opening lecture with Ursula Keller
Title of Series
Number of Parts
8
Author
License
CC Attribution - NonCommercial - NoDerivatives 3.0 Germany:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language
Producer

Content Metadata

Subject Area
Genre
Abstract
Novel time-resolved attosecond streaking techniques are currently being applied in an attempt to answer a very fundamental questions in quantum mechanics, such as how fast can light remove a bound electron from an atom or a solid? Furthermore, the question of how long a tunneling particle spends inside the barrier has remained unresolved since the early days of quantum mechanics. The main theoretical contenders, such as the Buttiker-Landauer, the Eisenbud-Wigner (also known as Wigner-Smith), and the Larmor time give different answers. Yet recent attempts at reconstructing valence electron dynamics in atoms and molecules have entered a regime where the tunneling time genuinely matters. We used the attoclock technique to measure the tunneling delay time in strong laser field ionization of helium and reveal a real and not instantaneous tunneling time. The matching theoretical model predicts a strong implications on the investigation of electron dynamics in attosecond science, because a significant delay must be taken into account about when the electron hole dynamics begin to evolve.
Keywords