Merken

Der Irrtum von Pierre de Fermat

Zitierlink des Filmsegments
Embed Code

Automatisierte Medienanalyse

Beta
Erkannte Entitäten
Sprachtranskript
4 Milliarden 294 Millionen 967 Tausend 297 ist 641
Nr. 6
Millionen 700 Tausend 470 Hartz
ist H H bereits
deshalb abends selber den Damen und Herren hat eigentlich gar keinen Fehler begangen wir leider gar nichts Mathematik publiziert ist einer der wenigen ganz großen Mathematiker nie eine Publikation herausgebracht hat
Pierre de Fermat musste auch gar nicht aber war nämlich in Wirklichkeit Rechtsanwalt und Rechtsgelehrter oder Mathematik nur so vor Gewitterregen wie viele andere
Dinge auch weil ein die Bilder Mensch und über diesen eigenartigen Menschen möchte ich jetzt fast als 1. sich etwas beweist das was Mathematik entdeckt hat ist nicht nur so tief dass wir in dieser Stunde ist nichts zusammen aber recht diese wirklich Werte für also nicht mehr Andeutungen geben aber wie sollen die sollen genügen um die Größe dieses Menschen und den Fehler über den ich sprechen möchte er doch irgendwo existiert aber der ein grandioser Fehler aber über den möchte also für a damals der sich zurück eines wird aber dann nach Frankreich jetzt das
damalige Frankreich das noch nicht geteilt war Departements ist war die Lebensdaten das Zammar
folgt man geglaubt dass 1601 geboren man muss nicht immer das ganz genau erlebte von 1600 bis 16 Uhr 65 im Süden Frankreichs geboren geboren
wurde er 55 Kilometer nordwestlich von torlosen der Ort wo Morello mal meinen Sohn
eines reichen Händlers es selbst bei der begütert hat sich selbst und das Geld nicht Sorgen machen müssen und hat die beste Ausbildung im damaligen gestohlene über dem damaligen Lernerfahrungen galt als eine Wissenschaft hochgebildet und das entschlossen ziviler zu studieren und das beste Studium für Zivilrecht das damit gegeben habe das waren auch
ein Jahr also nach Norden gezogen nach einer um dort von 16 23 bis 16 26 an Universitäten Zivilrecht zu studieren und Rechtsgelehrter zu
das war auch der nördlichste Arzt erreichte ist die gerne gereist was auch verständlich war sie dieser ist nicht nur der damaligen Zeit Bedenken und dann wurde der Anwalt und zwar in Bordeaux also wieder
im Süden der Stadt zu eines wird war bis zum Jahr 1630 und zog dann zurück wieder nach vorn
wurde weiter wäre eigentlich mehr Verbraucher sie müsse sich damals vorstellen dass jemand erlebt die richtige bekommen nicht auf vor das war damals sehr wichtig dann kann man das Leben auch gut genießen das Erbe des Vaters nötig dass man ein angenehmes Leben hatte kann sagte der Mann der sind Tag wird stark natürlich Rechtswissenschaften aber zwischen einem Freispruch und einem Todesurteil dazwischen hat sich mit dem beschäftigt was wirklich interessiert hat und das war das war die Zahl das war Zahlen oder gewusst ist gibt Kleid in Frankreich die sich zusammensetzen und die über die Zahlen auch sie aber das war nicht so los ist war ganz entfernt das war in der Hauptstadt des war in Paris aber nach Paris
alles nicht gezogen der damaligen Zeit dort spielte sich die große Politik ab da konnte man unter Umständen ganz groß werden aber ein
paar Stunden später von diesem von Thorn schneller von Fragen der damaligen Zeit herrschte mit einem Gefühl bekommen wie geleitet damals regiert wurden ein Kardinal
der große Kardinal Richelieu eigentlich herrschte der König aber König hat kalendarische alles geglaubt dass der Kardinal gesagt hat Roboter Kardinal
genannt wurde welche die Höhe 5. 85 bis 16 42-Jährige lebt von der war der 1. für aus er war eigentlich derjenige nebenbei gesagt die Idee von Außenpolitik erfuhr hat hat gewusst dass sie gegeneinander ausspielen die Mächte und vor allem dafür gesorgt dass sie sie es gibt es 16 42 das regiert hat das Osten Frankreichs nie Gefahr bestehen warum der dieser Ost mit sich selbst zu stark war im Dreißigjährigen Krieg und dieser Krieg so wollte es sich viel sollte nie auf dann wird es Frankreich niemals erleben dass die Bedrohung von außen kommen als er den weiterfinanziert und allerchristlichste König hat engagiert osmanische Soldaten damit verträgt weitergeführt und Nachricht hatte regiert Frankreich ein weiterer Kardinal Karl Auer
die graue nannte diese Begriff ist bis heute geblieben schön Maysara bis 16 61 also praktisch die
ganze Zeit als auch einmal gelebt hat und was daran hat auch die für sein können der König selbst damals war noch blutjung bis
sie den jungen Ludwig 14. später Sonnenkönige der Erwachsenen als einmal
ins Revier gejagt hat und wie es dir zur Strecke gebracht hat und die egal sagt Majestät der können sie keine nicht zufrieden Tiere erschießen das stark erlaubt dies nicht fragte Musik der 14. ist der Star der Staat das bin doch ich mittags war also unter diesem können also das war Frankreich in dieser Zeit wie gesagt es ist nicht gut sichtbaren in dieser Zeit politisch zu betätigen viel besser ist zurückgezogen zu leben und das tat aber ganz unbemerkt geblieben ist nicht der führte Brieftext Briefwechsel und Disput mit dem gelehrt der damaligen Zeit der für die Briefwechsel zum Beispiel mit der
kann wobei sich die Karte war nicht besonders gut verzogen die beiden hat es behauptet sie etwas erfunden
werden aber auch später noch zu sprechen kommen für die Briefwechsel mit an der mathematischen Kollegen Mathematiker war bei mir gesagt auch noch Astronomen einen Beruf gehabt aus musste man halt Rechtsanwalts und oder als oder etwas anderes damit dass sich das Geld verdienen kann die Mathematik war damals nicht mehr sehr trägt das war früher der Fall wo man das selber rechnen konnte und der anderem mussten diese rechten Glauben man durchgeführt hat aber zurzeit aus war der Beruf nicht gegeben wurde dieser Mathematik Kurs
werden da wohl nicht wie sie mit dem beschrieben und ein ganz an der neben mir gesagt bekommen es musste sie diese
Idee die sie Picot man möge sich zurückziehen die zurückgezogen lebende das Christentum mit einem Verbot vergeben wollte auch zu wenig über Tiere das wegen
der zum 1. Mal gesagt der Neuzeit Begriff des Atoms geprägt das
eigentlich auch von der bekommen schneller er kommt die bekommen hat und der vom Begriff von Demokrat übernahm also so ist es weiter gegangen und mit diesen per sehen wir hat ebenfalls Firma Briefwechsel geführt und dazu kommt noch der große Christian ich das
ein Holländer wie schrieb man damals war konnte doch nicht musste nicht man schrieb damals Latein alle
verstanden Latein Dateien Bardame ist die Sprache der Wissenschaft das hat sich dann erst später geändert Frankreich ist der diese wichtiges wissenschaftliches Zentrum geworden dass der später Französisch die Sprache der Wissenschaft geworden ist und dann wieder später ist Deutsch interessanterweise gewissen Zeit der gesagt einmal hat ein indischer Physiker an Einstein in den zwanziger Jahren entstand noch in Berlin gewirkt hat trifft geschrieben wo eine große kennt es gefunden hatte sich Physiker Abos und ein Einstein das gelesen Borussia hat natürlich aus die gekommen ist es damals noch politisch war auf Englisch geschrieben und der Stadt gesagt dieser habe es aber so wichtig die müssen deutsche besetzt ist jeder versteht sich das Fach und daran nachdem dieser Eindruck erfolgte dieser kommt vor allem weil die nicht gefangen wurden und nicht verschleppt worden fliehen mussten wurde sein dass es hat sich die Wissenschaft sprach war war konnte auch lateinisch konnte nicht einfach war aber es liegt also nicht reichen lateinischen Sprache selbstverständlich mit Pascal
konnte natürlich auch von Französisch konferieren des Pa mit der ist sehr gutes Verhältnis gehabt hat bei PA ungefähr in der Augenhöhle geistigen Augen
will von Firma aber was Mathematik angelangt hat sogar einiges besser gekonnt das PA das PA unumwunden zu gegeben hatte und schließlich und endlich mit einem der Begründer der französischen Akademie in Paris der um sich herum gegründet hat CO-PA kann auch dabei war einen Kreis von Gelehrten der selbst Mensch war ein kann Menschen
Marmarameeres und mit diesen mit vielen anderen hat seinen Namen Briefwechsel und in diesen
Briefen des der nach und Bahn Notizen immer noch bei gefunden hat sich alle seine mathematischen nirgendswo etwas publiziert in diesem Brief und das gemeine von Firma hat diesen Brief nur Behauptungen aufgestellt aber der ist dass überhaupt stehen der gesagt dass man sich prüft das selbst nach ich vielleicht hat es also es gibt nur ganz wenige Beispiele vor selbst sein Talent beweisen zur Schau gestellt hat freut es wirklich bewiesen hat ich werde vielleicht ganz zum Schluss noch darauf zu sprechen kommen aber normalerweise hat einfach nur die Behauptung geschrieben habe überhaupt oder waren zum Teil so zu unglaubwürdig können das richtig sein muss also diese Leistungen des Geldes einem beschreiben zu können will darüber sprechen was PA zusammen wird hat nämlich die Frage wie
fällt die fällt der bei der Wahl der Würfel einmal fällt dann weiß man nicht und tritt bestand
darin wenn man einmal den einmal fällt weiß man nicht aber auch das mit des Würfels erkenne ich wir mir fällt wenn der 6 Tausend Mann 6000-mal fehlt es an das Ende der ungefähr tausend Mal auf 6 frei und die des diese sozusagen die Mathematik hineinbringen diesen zuvor bestand darin dass man das Problem Geometer sie als ich werde diese wirft geometrisch darstellen durch
eine Rechteck das die 6 gleich große Teile Unterzeile jeder Teil des Rechtecks ist das Quadrat aus das Exportrate besteht das Recht steht für eine Augenzahl dass wird diese Quadrate sind gleich
groß wenn ich die Wahrscheinlichkeit dass der wir für keine dieser Augen fällt immer gleich groß ist bei der für viele so gebaut ist bei der ganz werde wir für die singt asymmetrisch müsste man eines dieser Quadrate größer machen und dafür das gegenüberliegende Gott hat also über die Gewissheit es wirklich nicht und machen auch das hatte man aber schon gewusst aber nicht beziehen den idealen Würfel sehen Sie da ich mir dieses Recht besteht aus 6 gleich großen Arten und die Frage ist wie groß ist die
Wahrscheinlichkeit dass sich 6 wird die Antwort lautet der Rechner vielleicht Bereichen die
Fläche dessen was du als Ereignis haben möchtest welche die Fläche dessen welche eigentlich überhaupt möglich sind und die Fläche dessen was das Ereignis haben möchte sieht dieses ein Quadrat und sagen das ist vielleicht ungefährliche dessen was überhaupt möglich ist dass diese 6 Quadrate sind der in 6 und so ist die
Wahrscheinlichkeit nichts anderes ist das Verhältnis von 2 vielleicht 3 1 zu 6 und das ist natürlich
noch sehr aber was ist mit 2 der 3 wir einander wir fühlten sich mal auf für gefallen ist und all diese Frage stellt es werden und dann bekommen darauf zurück da kann man sich sehr schnell und kann man sehr schnell Fehler begehen und die bei einem dieser Fehler der beiden passiert mit der nicht im Dezember sprechen das ist ebenfalls ein Franzose gewesen wie verrückt gewürfelt hat zur Zeit des und der auf der den anders zu gegeben hatte dass diese beiden Geistesgröße sich damit beschäftigt die sich über und über dessen Fehler aber wie gesagt erst im Dezember die mit der als die der Mittel erlaubt mir einiges von der Welt zu verstehen aber wir verstehen die Geometrie verstehen die Geometrie und die mit verstehen wir wir
Koordinaten einschreiten geht und Raum und die Koordinaten eine Struktur geben und als
ich hab ich jetzt bei rechtwinklig zueinander stehen die gerade Linien 2 Achsen die ist die x-Achse dazu bei der
gleich 0 sein die x-Achse ist dadurch gekennzeichnet dass der selbst Wert des 17 nicht die Abstand von bisher war gerade unter abschaffen sabbatlichen gerade ist wenn ich auf der fraglichen gerade eben gleich Kino also die Gleichung
Service gleich 0 ist das was ist sehen können das ist sozusagen die des ist die Firma entwickelt hat und die gleichzeitig auch der Karte tätig und natürlich war dann zwischen den beiden gefahren war der 1. Priorität immerhin ein wichtiger Punkt ich bin also x gibt zum Beispiel der Abstand von der senkrechten Gärtner ist Abstand positiv bin ich rechts ist Abstand lege ich bin ich links aber ist x gleich 0 hab ich eine Gleichung von die Gleichung x ist echt 0 aber kann ich sie also Sie können Gleichungen sie normalerweise sagt sich Gleichung vorliegt oder jetzt muss ich sie lösen das ist nicht der Punkt das zieht schöne bei der Gleichungen ist das wirklich schöne Wellengleichung ist dass man sie sehen kann Gleichungen könne sie zeichnen also die Gleichung x ist 0 zu Zeichen ist einfach eine senkrechte gerade die Gleichung gibt es 0 zur Seite ist einfach eine waagerechte gerade
Gleichung gibt es gleich 4 zu zeichnen ist wieder der senkrechte Gerhard aber rechts Abstand 4 von der Gerhard nix ist gleich 0 sind sie
der Comics ist der 4 oder weg vom Y ist gleich 2
das ist eine waagerechte gerade in der Höhe zu der von der geraten so das 0 1 ja das
ist der Publizistik 2 x ist der 4 wird soll es gleich 2 und die beiden gerade x ist der 4 gibt es gleich 2 die schnell einer Box und das ist der
Produkte und ist gekennzeichnet durch 2 Zahlen ich doch 4 also die x-Koordinate und doch zu leisten zu können und dass man als
es Stande bringt nicht mit der jetzt auf Zahlen zu reduzieren auf Gleichungen und zwar das war die Leistung der selten auch die Griechen zustande gebracht und Zahlen die Kirchen gehabt als die Kirche nicht gehabt haben bei den Gleichungen warum hatten die Griechen keine Gleichungen bei sie keine Buchstabenkarten die ihr welche Zahlen symbolisieren die man noch nicht kennt die Griechen hatten doch Buchstaben dieser Jahr hat ihre Buchstaben Griechen hatten waren schon Zahlen als eine Gleichung Alpha ist gleich 1 war für die Wahl für die Griechen keine Gleichung zur 2 Tatsache weil einfach war immer ein dass man mit kindischer mit ich betrachte die Gleichung als ist echt 0 hätte kenntliche das verstanden weil sie es doch nicht 0 also konnten nicht Gleichungen schreiben sie nicht das Instrumentarium der Buchstaben haben nicht zahlen Sie nun endlich was nicht zahlen sollen nur Zahlen symbolisiert das Symbol darf nicht das sein was es symbolisiert das ist das 3. das erlaubt Mathematik besser zu betreiben ist die nun aber das ist doch ganz einfach gewesen aber was immer noch untersucht hat ist das
ist wenig Kurve habe das ist eine sehr komplizierte Gleichung muss ist nicht mehr so x y 1. Potenz gibt Potenz und vielleicht auch hier die
komplizierte mit Logarithmen oder kann man so etwas verbunden also seine Kurve und vernahm war der 1. der die Frage beantworten konnte das einer Kurve sie liegt wie ich ich den höchsten Baum oder wie ich alles zur Übung wurde
Kurve ermöglicht die Kurve ist am höchsten Abstand zu da von der Y ist echt 0 Gleichung die finde ich dieses
Maximum vermarktet eine Methode die 1. Jahrzehnte später von Leibniz Newton noch einmal die von über aber es vom sagen auch die Franzosen es war nicht nur der Deutsche leidet unter dem IOC Differenzial Richtungs und das vom haben sollen Wirklichkeit macht der tatsächlich muss der Mann da diese Stelle zum
Beispiel des Textes wir diesen hoch Punkt dieser Kurve und zu haben Sie diesen Punkt ist nicht 4. 2 jetzt das wichtigen Punkt des Hochpunkt das 6. um uns diese vor
als der haben die Wahrscheinlichkeit reduziert auf die Geometrie und die Geometrie reduziert auf Zahlen und da war vermag der Firma Lipid die Zahl eine Zeit erlebte alle
Zahlen aber ganz bestimmt Zahlen hatte besonders also was nichts interessant aber 1 auch die Griechenland 1 für nicht so besonders interessant 8. weil sie sich keine Zahl des Vereins wenn ich
eine Gegenstand ist die Aufgabe zu zählen eigentlich ziemlich sinnlos der richtig 1. Zar non Burgbräu 1. Zahlen Momo Premier ist auf Deutsch die Zahl Numerus Primus musste der 1. Zeile dass es nicht 2 bei Unwettern uninteressantes sind alle weiteren Vielfache von 2 wenig 2 habe ich 4 6 8 10 12 setzte 16 usw. die vielfachen von 2 sind dann
sozusagen als drum derzeit 2 mit den streichen hat 2 bleibt es nächstes Umbau Premier der auf 2 folgt das ist dann 3 und was machen wir mit 3 1. bereits wichtige Zahlen und alle Vielfache von 3 lassen wird und die nächste Zeit übrig bleibt es Reihenfolge ist der nächste nächste Primzahlen Sinne dann 5 und alle weiteren Vielfache von 5 lassen einfach ist die Welt ist schon ist sehr viel weggelassen und die nächste Zahl betrachten die interessant ist ist das 7 werden alle weiteren vielfachen von 7 weggelassen dass es ohne die schon längst weggelassen und 3 mal 7 auch ist auch für auch 6 7 auch die 1. geht es wirklich gestrichen wird sie dann genau beachten ist erst 7 1 7 8 müssen schon wieder weg ist schon wieder weg ist nicht belegt ist meist 7 Musik wir dann auch gestrichen aber sie meist ist die 1. die es wirklich neue wegfällt sie 41 welches angegeben und der nächste Zeit übrig bleibt die nächste Primzahl ist dann und streicht alle vielfachen von 11 weg aber zweimal ist für alle Seiten zwischen längst gestrichen war die 1. die wirklich neu gestrichen wäre ja erst mal das 121 und das dieses hinterließ sich Keller und da das ist ganz weg und das sagen die Zahlen die jetzt die übrig bleiben die übrig bleiben das sind die Zahlen die keine vielfachen von die Vorstände das müssen nach sind als Prinz und ist sie die Primzahlen zwischen 1 zu kommen und dadurch gibt es dann noch diese stündlich hinten zeigen an noch viele viele der Firma wusste
natürlich das wussten schon eine Mathematik ist dagegen dass die Menge der Zahlen über Bord ist es gibt keine größte es geht keine also Sachen bisschen verwehrt mache sie sie dicht einen andere bis zum Beispiel eine 40 43 machen große Abstände die von 89. 97 und diesen bringt es habe bei der Firma ja man kann gar nicht auf den Grund gehen aber diesen sammelte Firma Gesetze aber die dass es noch gelungen hat gesagt die stammen der Primzahlen an und ist sie zunächst einmal in die gerade die ungeraden wir gerade bei gibt es
nicht viele sollte daher und da gibt es auch diese viele gerade weil ungeahnte sein sagte beteiligt wieder ein wenig nämlich der ungerade Primzahlen durch 4 dividiert kann entweder der Rest 1 bleiben und es kann der ist bei einer des Muster bleiben wenn keine es bliebe des vielfach ist von 4 das vor und es kann auch nicht so bleiben wird der es mir seine gerade Zahl der auch schlecht Iskander der Rest 1 ist eine und die ist in 2 Gruppen betrachtet oder lässt 1 bleibt gelassen wir Geld oder es 3 bleibt machen will und das ist sehr
einfach zu zeigen will ich jetzt nicht derart ist ja wirklich nicht mehr zu zeigen die bei Zeit die lag im Wort ist also wird es daher die können niemals die Summe von 2 Quadratzahlen sei es das geht nicht wenn die Summe von 2 liegt ungerade Zahl zum Quadrat Omega Zeit zum Beitrag lässt sie doch 4. den Rest 1 also wenig 2 ungerade Zahlen zum Quadrat nehmen unter die bleibt es 2. geht gar nichts oder wenig eine ungerade Zahl zum Quadrat des den Rest einzelne gerade Zeit zum weiter mit den letzten Rest 0 der Division doch wir bleibt es 1 bestgekleideten bleiben aber es ist mit dem was ist mit den Zahlen die den Rest eines das doch die also dem sie dann nach durch
5 zum Beispiel 5 ist 4 plus 4 seine Quadratzahl 2 mal 2 und 1 ist ein Quadrat an Ort was ist mit 13 13. 9. 3 Quadrat bis 2. A H und was ist mit 17 das ist einfach 17 bis 16 bis 1 bis 4 Quadrat besetzt und 29 kommt bestellt drauf das Muster 25 dass es 5 Stadtrat das sagt 37 das ist leicht das ist 36 plus 1 6 Quadrat Präsenz also wenn das bis jetzt schon stehen damit man süchtig vermag Prüfzeit was ist mit 41 41 25 das 16. drahtlos das stimmt auch Wissensarbeiter schauen ist der 53 Chart kompliziert aus aber 49 plus 4 A 7 Quadrat das seit Jahren das macht bei 61 Jahre muss man nachdenken aber kommt auf 61 ist 6 Quadrat gesurft vertrat 36 das von 20 gezielt nicht das süchtiges sogar Gläubige 73 hat 64 müssen 8 wird hat das Rekordjahr 89 und des ist kompliziert nachdenken aber 64 das 25 so es kommt heraus tatsächlich 89 8 wird hat das wirft und der 97 dem auch das ist mein Gott hat bis 4 Grad als bisher gezeigt für die 1. 1. Bahn aber was aber auch dort ist das stehen nach man sie mich fragen wie viele Primzahlen gibt den Rest einsetzen und Sophie dividiert an wird es gibt unendlich viel und für alle stimmt für alle steht und wenn man schreibt das in einem Brief an der im März seinen am 25. Dezember 1640 vermisst das der Weihnachtsmarkts der Mathematik alle die den Rest
Einsatz soviel die wir jetzt sind einer Summe von 2. Platz nehmen gesagt kann man zeigen wenn man eine ungerade Zahl bis zur von 2 Quadratzahlen nur eine einzige Art und Weise schreiben kann die bei den Beitrag zahlen gemeinsame Zeit als Teile haben dann muss diese Zeit selbst wie der Prinz als Wasser dafür nach verwendet und bringt zusammen schnell zu bekommen Quadratzahl als Partner gibt ganz wenig vielleicht sie gesehen der diese Zahlen bis 100 haben 25 Zahlen habe aber bis 100 gibt's nur 10 Quadratzahlen 1 wird derzeit Berater der ist denkbar hat den Berechnungen wird also mehr bringt als Quadrat sein was von 1 bis 100 und wenn man bereit ist ist das Verhältnis der Quadratzahl zudem der Primzahlen immer schlimmer als die Quadratzahl es gibt und gab ich weniger Drahtseil und Omega wieviel bringt seinen sofern diese wunderschönen dass die Summe von 2 Quadratzahlen der diese von 4 4 Kapos Inselketten aber wie gesagt vermarktet heißt das nicht dass sagte der heißt es und das Herz einer bewiesen der 1. bewiesen hat bei der große Leonardo lange
100 Jahre später mehr als 100 Jahre später auch in einem Brief an diesem Christian Goldbach
Goldbach verdanken wir die Tatsache dass sich heute mit formal beschäftigt hat Gold parat Euler auf diese Firma aufmerksam gemacht und das heute gesehen dass damals behauptet hat und der Sieger Eulert große Mathematik aber das hat dann versucht alles setzte die Vermarktung nur so behauptet hat zu der Reise und dieser Sinneswandel der ist ist nicht leicht ist ich nach es wirklich so sich den viele Mathematik und einen neuen einfach Beweis zu finden der französische Mathematiker
Lagerraum hat einen weiteren Beweis gefunden und der der gesagt auch gezeigt dass sie jede Zeile als Summe von 4 Quadratzahlen geschrieben werden kann sagt und der größte Mathematiker damals der kann sich außerdem neuen Beweis gefunden und es elegant wird als fahren um 1900 herum Mathematik Universität Göttingen der bedeutende Mathematik Hermann Minkowski eines sehr raffinierte der der wiederum die Zahlen auf die Geometrie zurückgeführt hat mich dafür werden das ist eine der wer es gibt in einer Zeile für dieses Satzes müsse seine Seele praktisch für den Normalbürger selbständig Verlegung verständlich aber es geht in einer Zeit der Verbraucher einige Vorbereitung diesen Einzelpläne es hat geführt der bedeutende amerikanische Mathematiker der sowohl den bauen als auch in Paris Harrisleer Donnerstag ich auf des Berliner möchte weil sonst der
Gegenwart derjenige der hier vor mehr als 10 Jahren März bis der Vertrag mit einem Vortrag über die Schönheit der Mathematik und dass man gebeten hatte doch wirklich schöne Formen an die Tafel schreiben was diese Frau hier das war die schlimmste vor und hatten damals die das geführt wurde nicht geahnt nicht gern dass sie so viel für die Schönheit der Mathematik begeistern sonst sind sie alle gekommen aber dann hat uns gesagt er einmal wird es erreichen aber aber dann nicht aber sie können mir glauben meine Frau dafür wirklich sehr viel getan und wir wissen dass das dass das Personal Organisation zu natürlich nicht klappt aber es ist ist zustande gebracht ist aber das hat sagte dafür noch immer schön und nur so kann ich Ihnen was auch noch alles es hat das ist bis jetzt nicht nur gesagt dass alles richtig gemacht der dortigen vieles richtig gemacht hat zum Beispiel behauptet Mersenne Primzahl haben ihren eine Primzahl zum Beispiel 1907 in Mainz 1937 der Zahlen oder 65 das oder 37 egal was es sein muss man ihren eine andere ganze Zahl aber AG hoch dieser
Primzahl - aber ist auf diese bei Zeit Dateien macht
dieses unglaublich wichtigen Satz der gesagt wird derzeit in der bei den kleinen Satz von vermag auch das hat man natürlich nicht bewiesen werden ist die diesen Broiler oder Heimat gezeigt wenn man betrachtet die Gleichung x
Gott minus pi Y ist gleich ein sie Gleichungen schon früher in englischer Mathematik in gewisser L betrachtet deren nur den Fall betrachtet hat das das P keine zur seine Quadratzahl ist oder sie primitiv diese Gleichung aber vermag gezeigt wenn es Zeit ist es selbst sogenannte Quadrat Freizeit ist diese Gleichung ist war ich schreibe lösbar wenn Sie sagen dass ich es Kurve nicht richtig aber sie man ganz Zeilen und damit ich
viele ist eine ist gar nicht so zu sein 17 und ist 0 das ist noch gar aber auf die Startup-Firma nicht das behauptet einfach so hat einfach sie geschrieben hat dieses sich der Prinz die das natürlich wieder und dann hat danach 1 in einem Buch über die Arithmetik dass diese Diophantos geschrieben hat betrachtet die Gleichung
Position noch ok ist seit Wochen gegen die Potenz einer ganzen Zahlen gibt es nicht 0 ist der Impotenz Zahlen nicht 0 Y Gebete über den seiner Zeit setzt nicht durch einen
in dem Buch das dir fand dort wird diese Gleichung betrachtet die Pest rechts daher von der Vater es zeigt die man diese Gleichung für PS gleich 2 einen ganzen Zahlen löste unter Marschall den dem Buch an den er an dass das für P größer als 2 Wirklichkeit sind nicht nur Prinz interessant wird größer ist bei unlösbar dass es so ist behauptet und das war der Start doch was dazu die Stationen auf dem lateinischen ist das Stück typische ist diese Tatsache dass sie
unlösbar ist kurios Demonstration aber wenn seine Textes also ich hab einen Demonstration immer haben in eine von der Bahn der SMS Sun wahrhaft wunderbaren Bilder kuriosere dieser Tatsache entdeckt der Text die als ich hab das hat den Beweis dafür dass x ob ihr Besitzer noch ist der doch für größer ist bei und erstattet und der Bank die sie Xingu das vom Kap
damit meint der Weg sie gut dass die Kleinheit Fischmahlzeit hat kann man hat sie gut dass diese mal ist das anders von das seit ich also die kleine das seit Nordkaper fast der ist nicht das was ich den also sie können nicht auf aber mir sogar bereits und natürlich Euler bekommt das auch mitgeteilt muss sucht Beweis dafür sagt einer der Kriegszustand mit größter Mühe ist auch wirklich sehr sehr schwer für P ist echt daher zu zeigen dass man nicht führt 3 5 versagt aber eine französische Mathematik der hatte suchte für 5 das zeigen sie praktisch fast gelungen Wasserboiler wie gesagt ist
nicht zustande scheint sogar nach Frankreich man möge doch schauen Nachlass dieses
verdammten welchen der sich ausdrückt dieses für Opener dann nicht irgendwo einen Zettel finde Rose Beweis aufgeschrieben ist chancenlos ist für Jahrhunderte unbewiesen geblieben erst vor ein paar Jahrzehnten also in den neunziger Jahren des vorigen Jahrhunderts hat ein britischer Mathematik durch weil es
nach jahrelanger Arbeit sie wirklich diesem Problem gewidmet hat schon
vorab gehabt von von anderen bald denkt und frei ähnlichen leiten und hat das Gefühl der sich nicht der der habe sich nicht mit Drogen verwendet die Firma nicht zugänglich waren ist weiß man nichts hatte sich die ihr dass sich nicht und wenn einen Fehler gemacht hat das überhaupt für uns und erkennbar von dieser Fälle ist in den USA von der Gestalt ist es dass so darüber gefreut hat und des dummer Mensch gewesen und gegen eine war ein Genie höchstwahrscheinlich wird der gemerkt haben dass es falsch war aber warum sollte eine Bemerkung durchsprechen der denkt doch nicht daran dass sie bekommen dass die Nachricht noch überhaupt Interesse hat neben der gesagt hat bewiesen die dazu führt P ist gleich 4 also soviel bis 17 Uhr 4 ist Z doch sogar 10 Quadratmeter mir gesagt das ist wirklich Bundesbank und da er hat für eine Beweis angegeben wunderbaren der gesagt der so genannten des Northern Fini Unendlichen Abstieg und die Tatsache dass dafür für meine Beweis angegeben hat deutet an dass sie gemerkt dass diese beweist der da hin schrieb das nicht mit Gold aber kostet angewiesen stehen die ganze Sache ist es wirklich eine eigene Erzählung wird es ist sogar ein eigenes
Buch wird dass sie keine vielleicht dieses Buch von sind als letzter Satz man das als letztes dazu dass die letzte noch unbewiesene Behauptung aus ausgewiesen ist man manches ist der große
vermaschtes dazu oder eigentlich nicht bedeutend der keine Firma Schlusssatz und dieses Buches sind es keine ganze Mathematik Geschichte um dieses hat wunderbar verfasst wo sie mit er doch nicht erzählt doch nun jetzt sage ich große Primzahlen die vom hat gesagt nun ja also 2 plus
1 ist da ist schon einmal eine bringt es sei zwar nicht sehr groß aber doch bringt Zeit und 2 plus 3 bis 5 Uhr bringe auch eine Zahl mit SPD nichts wußte einmal 5 einmal 5 bis 15 bis 17 aber auch eine bringt es jetzt bildlich zu der plus 3 mal 17 nicht die Zahl nicht schon vorher hat einmal 5 bei 17 bis 2. ist 57 der Firma hatte gewusst dass es bei der nächste Zahl der bilden muss das ist 2 bis dreimal 5 17 mit Sonne 57 wird das ich schon ziemlich groß ist 65 Tausend 537 und das
kann man sicherlich wird wahrscheinlich ein paar Urteile etwas später herausgegeben einer umgerechnet hat ist von 60 Tausend 537 bringt das was mit dem Trick gemacht gesagt ich schaue mir angeblich für muss sich das 37 als Summe von 2 Quadratzahlen schreiben kann hier eine ist klar dass nämlich 1 Quadrat plus 65 Tausend 536 das ist nämlich 256 so wird also zur 56 zum Vertrag bis 1 Quadrat ist diese Zahlen gibt es noch eine andere Darstellung anders keine bringt es halt nicht mehr brauchten die Quadratzahl durchzuprobieren als es geht den relativ schnell und draufgekommen dass ist ja und das hat sich damals müssten mehr noch weitermachen machen jetzt muss sie betrachten die Zahl
zeitlos bei 5 bis 17 Meter 50 für muss sie Tausend 537 bekommt bezahlt 4 Milliarden 90 Millionen 967 Tausend 97 und die schon ein
bisschen sehr aus sie müsse sich vor stimmen damit das nur Zahlen zu aufschreiben konnte weil ungefähr 100 Jahre bekam der der früher die Zahlen geschrieben römischen Zeit sei müsse dies für schützt als ziemlich unangreifbar und Anfang des
BBC-Chef war tatsächlich in einem Brief der 60 37 aber ich hier ist das was sich am meisten bewundere also doch ziemlich stolz es ist zu bietet 8. war das sich daher zu überzeugt bin dass die Zahlen 3 5 17. 7 Uhr 50 65 Tausend 537 sowie 4 Milliarden 294 Millionen sie die Tausend 97 und die Folgen der 20 Ziffern bestehende Zahl also aus ausgewählt hat dass die 18. junger für 46 Milliarden 7 Uhr 44 Millionen 73 Milliarden sind nur 2 Millionen 151 Tausend 617 EZB-Rat es geht man weiß wie es weitergeht 3 bezahlen Sie sind die
Fragen Mario also was habe ich davon aus dass das ist der unterschreibt der bitte beachten Sie ich
habe dafür keine exakten werde es habe aber eine große Anzahl von Thailand doch unfehlbare der Weise ausgeschlossen und meine Überlegungen der und auf einer solchen Kanaren Einsicht dass sich Cao viel geben kann als er
es sich sehr sicher ist sich aber nicht ganz sicher ist unglaublich gut der hat sich schon die ihr aber daher ist die Chance es ganz klein dass es sich regiert hat aber hat sich die
bis zu 641 teilt diese gefunden habe es Euler im dass
man 641 sogar das ab ob ich aber 640 Wasserboilern nicht gemacht hat es der Trick gemerkt es mich sehr sehr schwer sehr sehr schwer aus riesengroßen ungeraden Zahlen die Teile herauszufinden wenn sie keine bringt das ist gar nicht einfach als die Multiplikation widerlegen steht 2 also die Addition zeitloses gehabt und die Multiplikation dreimal für Vorsitz immer 2 7 Uhr 50 mal für muss das wird 37 macht man also mit wird mit dem Computer innerhalb ganz geschwiegen was selbst mit der Hand Rechnung brauchen Sie vielleicht was an der 10 Minuten sie sind ja ich brauch 20 aber 70 der wird der ist bei mir aber herauszufinden was 4 Milliarden 240 Millionen 967 Tausend 197 doch 641 teilte ist dafür brauchte man vor Firma Bisholder 100 Jahre und das ist ärgerlich aus der sich für dieses Problem also multipliziert ist leicht Kailas ist und man wird es nicht glauben dafür kann man bringt die Verbände und zwar riesengroße bringen sie multipliziert 2 riesengroße Primzahlen haben die kann sich große Zahl von was sich 600 700 Stellen diese gigantisch große Zahl von sie um zu falsch ist und eine Botschaft und niemand kann sie Entschlüsse und niemand weiß aus welchen bringt Faktoren dieser riesengroße Primzahl besteht
die Amerikaner wurde dass manche mir haben dieses Verfahren entwickelt und veröffentlichte der gesagt 3 Jahre früher englische Mathematiker bereits schon gekannt haben es aber nicht veröffentlicht die über sowie bei ist auf
dänische Region verboten hatten wir gesagt wird damit kann sie Botschaften verschleppt und bringt zahlen Sie etwas grob und zwar dieser Risiken bei der sich davon abgewendet und denkbar was soll das und wie ich mir schon andeutet immer seltener damit ich jetzt das alles auf der Bühne eigentlich nichts bewiesen einfach jetzt also wenn sie ein bisschen genauer wissen wollen wie es genauer wissen wollen sie können kommen waren im März bis nach oben erziehlichen vielleicht ein bisschen mehr nicht ganz auf Wort und ist ist noch genauer wissen wollen ich schon vor gezeigt dass pro von Simon Singh und jetzt sage anderes Buch von andern Autor
steht das mit diesem großen bringt Primzahlen und bekomme sie vor die sie die ganze und Aula und andere das Karl mit Vermarkung von damals sogar konferiert zwar nicht direkt aber Übermittler sollte mit dem großen Galilei auch in Buchform vorkommen und diese große Galilei es
werden der große Galilei das ist derjenige der auch viele deckt nämlich bei Aristoteles konnte die ganze Restaurant billig wie sie tätig bedacht und gesagt falsch Star falsch dort falsch dort aber was ich dann erzielen möchte ist dass
Galilei selbst auch einen Fehler begangen einen unglaublich interessant ist der ganze mathematische Theorie in Gang gesetzt hat vor vom Kaliber
keine Ahnung mehr hat das sind den nächsten schönen schönsten aber dass nicht einen Monat später muss ist dass sich in der sie darauf dass sind und das unselige das wird nicht finanziert von Ministerien dass sie hier kommen können daß gefiel Leopold II. wie kann das jetzt nach noch sie von etwas erholen können von diesem riesigen Primzahlen und ich darzubieten wenn es interessiert einerseits zu kontrollieren ob ich viele gemacht habe das können Sie ganz leicht und dem sie schon fast 70 Tausend legt sich anschauen diese Vorträge auf YouTube obwohl sie mit der ist sie selbst kommen weil man spürt die Augur des gegenwärtigen zu Vorträgen kamen nach viel besser Einschlafen sie wird andere Vorteile hier die wird man gestört durch das Lachen des Nachbarn wie dem auch sei sie sich sehr herzlich eingeladen am 13. November zu erfahren dass Galileo bestenfalls Versuch und versuchen mit der schiefen Ebene bei Überlegungen über eine anstellte viele hinein sagte dieser viele Ursprung ist eine eigene mathematischen Theorie bis dahin Vinci wunderbare Lage und ich dann dass sie mit wir aber vieles Prä
haha
Mathematiker
Vorlesung/Konferenz
Computeranimation
Fermat, Pierre de
Mathematiker
Vorlesung/Konferenz
Computeranimation
Vorlesung/Konferenz
Technische Zeichnung
Computeranimation
Vorlesung/Konferenz
Technische Zeichnung
Computeranimation
Vorlesung/Konferenz
Technische Zeichnung
Zahl
Computeranimation
Mathematische Größe
Vorlesung/Konferenz
Computeranimation
Strecke
Vorlesung/Konferenz
Computeranimation
Mathematiker
Vorlesung/Konferenz
Computeranimation
Vorlesung/Konferenz
Computeranimation
Physiker
Vorlesung/Konferenz
Pascal-Zahlendreieck
Einfügungsdämpfung
Computeranimation
Kreis
Mathematiker
Vorlesung/Konferenz
Computeranimation
Würfel
Vorlesung/Konferenz
Computeranimation
Leistung <Physik>
Mathematische Größe
Quadrat
Würfel
Rechteck
Mathematiker
Vorlesung/Konferenz
Computeranimation
Quadrat
Rechenbuch
Würfel
Vorlesung/Konferenz
Computeranimation
Mittelungsverfahren
Quadrat
Fläche
Vorlesung/Konferenz
Geometrie
Computeranimation
Punkt
Achse <Mathematik>
Wellengleichung
Gleichungssystem
Abstand
Gleichung
Koordinaten
Computeranimation
Höhe
Abstand
Biprodukt
Gleichung
Ausgleichsrechnung
Zahl
Computeranimation
Exponent
Kurve
Mathematiker
Vorlesung/Konferenz
Gleichungssystem
Gleichung
Zahl
Computeranimation
Kurve
Maximum
Abstand
Gleichung
Computeranimation
Punkt
Kurve
Vorlesung/Konferenz
Geometrie
Zahl
Computeranimation
Primzahl
Ext-Funktor
Zahl
Computeranimation
Menge
Primzahl
Mathematiker
Vorlesung/Konferenz
Abstand
Gesetz <Physik>
Zahl
Computeranimation
Summe
Quadrat
Quadratzahl
Primzahl
Mathematiker
Vorlesung/Konferenz
Division
Zahl
Computeranimation
Gradient
Summe
Quadrat
Quadratzahl
Primzahl
Berechnung
Vorlesung/Konferenz
Zahl
Computeranimation
Mathematische Größe
Summe
Quadratzahl
Minkowski, Hermann
Mathematiker
Vorlesung/Konferenz
Geometrie
Zahl
Computeranimation
Homogenes Polynom
Primzahl
Ganze Zahl
Mathematiker
Vorlesung/Konferenz
Zahl
Computeranimation
Quadrat
Quadratzahl
Kurve
Mathematiker
Vorlesung/Konferenz
Gleichungssystem
Gleichung
Computeranimation
Position
Exponent
Ganze Zahl
Arithmetik
Vorlesung/Konferenz
Gleichung
Zahl
Computeranimation
Ganze Zahl
Gleichung
Computeranimation
Mathematiker
Computeranimation
Mathematiker
Vorlesung/Konferenz
Computeranimation
Primzahl
Mathematiker
Vorlesung/Konferenz
Zahl
Computeranimation
Summe
Quadrat
Quadratzahl
Meter
Vorlesung/Konferenz
Zahl
Computeranimation
Ziffer
Folge <Mathematik>
Zahl
Computeranimation
Vorlesung/Konferenz
Computeranimation
Addition
Faktorisierung
Multiplikation
Verbandstheorie
Primzahl
Vorlesung/Konferenz
Zahl
Computeranimation
Mathematiker
Vorlesung/Konferenz
Computeranimation
Primzahl
Vorlesung/Konferenz
Mathematik
Computeranimation
Primzahl
Vorlesung/Konferenz
Geneigte Ebene
Computeranimation
Schnitt <Mathematik>
Computeranimation

Metadaten

Formale Metadaten

Titel Der Irrtum von Pierre de Fermat
Autor Taschner, Rudolf
Mitwirkende Krupica, Michael (Kamera/Schnitt)
Lizenz CC-Namensnennung - keine kommerzielle Nutzung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
DOI 10.5446/15791
Herausgeber math.space
Erscheinungsjahr 2013
Sprache Deutsch
Produzent Krupica, Michael

Inhaltliche Metadaten

Fachgebiet Mathematik
Schlagwörter Simon Singh
Andrew Wiles
Leonhard Euler
Don Zagier
Hermann Minkowski
Carl Friedrich Gauß
Joseph-Louis Lagrange
Christian Goldbach
Marin Mersenne
Blaise Pascal
Christian Heuchens
Pierre Gassendi
Bernard Frénicle de Bessy
Rene Descartes
Jules Mazarin
Richelieu
Pierre de Fermat

Ähnliche Filme

Loading...