AV-Portal 3.23.3 (4dfb8a34932102951b25870966c61d06d6b97156)

TUDOR tip position control with Neural Networks

Video in TIB AV-Portal: TUDOR tip position control with Neural Networks

Formal Metadata

Title
TUDOR tip position control with Neural Networks
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
2011
Language
Silent film
Production Year
2011
Production Place
Dortmund

Content Metadata

Subject Area
Abstract
The forward and inverse kinematic model of a multi-flexible-link robot arm for varying payloads are each approximated by using artificial neural networks. The tip position is predicted from the joint angles and strain signals. The strain measurements allow the reaction to changes in the payload. Thus, the kinematic models can be applied in case of varying payloads. The closed loop controller corrects the joint angles at the target pose based on the pose predicted by the forward model and archives an average pose error of less than 3 mm. Timeline: 00:10 Deflection of TUDOR after adding 600g payload 00:25 Tip position control of TUDOR after adding 600g payload 00:42 Relaxation of TUDOR after removing 600g payload 00:57 Tip position control of TUDOR after removing 600g payload References: - Phung, A. S., J. Malzahn, F. Hoffmann und T. Bertram: Data Based Kinematic Model of a Multi-Flexible-Link Robot Arm for Varying Payloads, In IEEE International Conference on Robotics and Biomimetics, Phuket (Thailand),07.-11.12.2011, pp. 1255-1260 Dezember 2011 - Malzahn, J., A. S. Phung, F. Hoffmann und T. Bertram: Vibration Control of a Multi-Flexible-Link Robot Arm under Gravity, In IEEE International Conference on Robotics and Biomimetics, Phuket (Thailand),07.-11.12.2011, pp. 1249-1254 Dezember 2011 For more information on the project please visit: http://www.rst.e-technik.tu-dortmund.de/cms/de/Forschung/Schwerpunkte/Robotik/TUDOR neu/index.html
Keywords oscillation damping collision detection flexible robot elastic link flexible link compliance force control robotics machine learning neural networks inverse kinematics
Computer animation Kette <Zugmittel>
Computer animation
Computer animation
Computer animation
Computer animation
Computer animation Finger protocol
Loading...
Feedback
hidden