TUDOR tip position control with Neural Networks

5 views

Formal Metadata

Title
TUDOR tip position control with Neural Networks
Author
Malzahn, Jörn
Phung, Anh Son
Hoffmann, Frank
Bertram, Torsten
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
DOI
Publisher
TU Dortmund, Lehrstuhl für Regelungssystemtechnik
Release Date
2011
Language
Silent film
Production Year
2011
Production Place
Dortmund

Content Metadata

Subject Area
Abstract
The forward and inverse kinematic model of a multi-flexible-link robot arm for varying payloads are each approximated by using artificial neural networks. The tip position is predicted from the joint angles and strain signals. The strain measurements allow the reaction to changes in the payload. Thus, the kinematic models can be applied in case of varying payloads. The closed loop controller corrects the joint angles at the target pose based on the pose predicted by the forward model and archives an average pose error of less than 3 mm. Timeline: 00:10 Deflection of TUDOR after adding 600g payload 00:25 Tip position control of TUDOR after adding 600g payload 00:42 Relaxation of TUDOR after removing 600g payload 00:57 Tip position control of TUDOR after removing 600g payload References: - Phung, A. S., J. Malzahn, F. Hoffmann und T. Bertram: Data Based Kinematic Model of a Multi-Flexible-Link Robot Arm for Varying Payloads, In IEEE International Conference on Robotics and Biomimetics, Phuket (Thailand),07.-11.12.2011, pp. 1255-1260 Dezember 2011 - Malzahn, J., A. S. Phung, F. Hoffmann und T. Bertram: Vibration Control of a Multi-Flexible-Link Robot Arm under Gravity, In IEEE International Conference on Robotics and Biomimetics, Phuket (Thailand),07.-11.12.2011, pp. 1249-1254 Dezember 2011 For more information on the project please visit: http://www.rst.e-technik.tu-dortmund.de/cms/de/Forschung/Schwerpunkte/Robotik/TUDOR neu/index.html
Keywords
oscillation damping
collision detection
flexible robot
elastic link
flexible link
compliance
force control
robotics
machine learning
neural networks
inverse kinematics
Computer animation Chain
Computer animation
Computer animation
Computer animation
Computer animation
Computer animation Finger protocol
Loading...
Feedback

Timings

  312 ms - page object

Version

AV-Portal 3.9.2 (c7d7a940c57b22d0bc6d7f70d6f13fde2ef2d4b8)