We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Best Paper: Accelerating High-Resolution Weather Models with Deep-Learning Hardware

Formal Metadata

Title
Best Paper: Accelerating High-Resolution Weather Models with Deep-Learning Hardware
Title of Series
Number of Parts
10
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 2.5 Switzerland:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The next generation of weather and climate models will have an unprecedented level of resolution and model complexity, and running these models efficiently will require taking advantage of future supercomputers and heterogeneous hardware. In this paper, we investigate the use of mixed-precision hardware that supports floating-point operations at double-, single- and half-precision. In particular, we investigate the potential use of the NVIDIA Tensor Core, a mixed-precision matrix-matrix multiplier mainly developed for use in deep learning, to accelerate the calculation of the Legendre transforms in the Integrated Forecasting System (IFS), one of the leading global weather forecast models. In the IFS, the Legendre transform is one of the most expensive model components and dominates the computational cost for simulations at a very high resolution. We investigate the impact of mixed-precision arithmetic in IFS simulations of operational complexity through software emulation. Through a targeted but minimal use of double-precision arithmetic we are able to use either half-precision arithmetic or mixed half/single-precision arithmetic for almost all of the calculations in the Legendre transform without affecting forecast skill.