Merken

Large-eddy simulation of the scalar transport in a forest-edge flow

Zitierlink des Filmsegments
Embed Code

Automatisierte Medienanalyse

Beta
Erkannte Entitäten
Sprachtranskript
Computeranimation
Klimaänderung
Meteorologie
Niederspannungsnetz
Förderleistung
Seeklima
Klimatologie
Computeranimation
Meteorologie
Klimaänderung
Niederspannungsnetz
Förderleistung
Direkte Messung
Seeklima
Klimatologie
Computeranimation

Metadaten

Formale Metadaten

Titel Large-eddy simulation of the scalar transport in a forest-edge flow
Untertitel Spatial variability of the scalar distribution and the scalar transport downstream of a clearing-to-forest transition
Serientitel A Parallelized Large-Eddy Simulation Model for Atmospheric and Oceanic Flows
Autor Kanani, Farah
Maronga, Björn
Knoop, Helge
Raasch, Siegfried
Lizenz CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
DOI 10.5446/14311
Herausgeber Leibniz Universität Hannover (LUH), Institut für Meteorologie und Klimatologie
Erscheinungsjahr 2014
Sprache Stummfilm
Produktionsort Hannover

Inhaltliche Metadaten

Fachgebiet Physik, Technik
Abstract The animation displays the development of coherent turbulent structures above a forest canopy downstream of a clearing-to-forest transition. Animation data were derived using the parallelized large-eddy simulation model PALM , simulating a neutrally stratified forest-edge-flow with a mean flow from left to right and a 10-m wind of 6m/s above the clearing. The forest, as surrounded by the green isosurface, is modeled in PALM as a porous viscous medium that decelerates the mean flow and damps the turbulence. Only a part of the total PALM domain is presented, and the vertical direction is stretched by a factor of 1.5 for better visualization. Turbulence structures and intensities are visualized by the rotation of the velocity vector (absolute value), with highest values in pink and lowest values in yellow. The animation spans over the last 180 seconds of a 3-hr simulation with a time-lapse factor of 3.6, and it was created with VAPOR (www.vapor.ucar.edu). The total PALM domain had a size of 768 x 384 x 128 grid points in streamwise, spanwise and vertical direction, with a uniform grid spacing of 3m in each direction. In total, the simulation required 18 hours of CPU time using 512 CPUs on the SGI Altix ICE of the North-German Supercomputing Alliance. The approaching flow is turbulent with different scales of turbulence being randomly distributed. Entering the forest volume, turbulence is efficiently damped by the forest drag. Above the forest, turbulence is effectively generated due to the strong velocity shear near the forest top. With increasing distance from the forest edge, the developing turbulence structures grow in size and strength. They form a layer of high turbulence activity, a so-called internal boundary layer, within the flow adjusts to the abrupt change of the surface conditions at the clearing-to-forest transition.
Schlagwörter large-eddy simulation
forest edge flow
internal boundary layer
coherent turbulent structures
palm

Zugehöriges Material

Ähnliche Filme

Loading...