We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Quantitative inverse scattering via reduced order modeling

Formal Metadata

Title
Quantitative inverse scattering via reduced order modeling
Title of Series
Number of Parts
4
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
I will discuss an inverse problem for the wave equation, where a collection (array) of sensors probes an unknown heterogeneous medium with waves and measures the echoes.The goal is to determine scattering structures in the medium modeled by a reflectivity function. Much of the existing imaging methodology is based on a linear least squares data fit approach. However, the mapping between the reflectivity and the wave measured at the array is nonlinear and the resulting images have artifacts. I will show how to use a reduced order model (ROM) approach to solve the inverse scattering problem. The ROM is data driven i.e., it is constructed from the data, with no knowledge of the medium. It approximates the wave propagator, which is the operator that maps the wave from one time step to the next. I will show how to use the ROM to: (1) Remove the multiple scattering (nonlinear) effects from the data, which can then be used with any linearized inversion algorithm. (2) Obtain a well conditioned quantitative inversion algorithm for estimating the reflectivity.