We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Topological entropies of subshift of finite type in amenable groups

Formale Metadaten

Titel
Topological entropies of subshift of finite type in amenable groups
Alternativer Titel
Topological entropies of SFTs in amenable groups
Serientitel
Anzahl der Teile
15
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Given a countable amenable group G one can ask which are the real numbers that can be realized as the topological entropy of a subshift of finite type (SFT). A famous result by Hochman and Meyerovitch completely characterizes these numbers for Z2. I will show that the same characterization is valid for any amenable group with decidable word problem which admits an action of Z2 which is free and bounded. Using this result we can give a full characterization of the entropies of SFTs for polycyclic groups. Furthermore, the same result holds for any countable group with decidable word problem which contains the direct product of any pair of infinite, finitely generated and amenable groups. In particular, it holds for many branch groups such as the Grigorchuk group.