We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

On a Theorem of Arthur and Clozel

Formal Metadata

Title
On a Theorem of Arthur and Clozel
Title of Series
Number of Parts
7
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Nearly thirty years ago, Arthur and Clozel proved that every nilpotent Galois representation of a number field arises from an automorphic representation, which, in fact, follows from Artin reciprocity, their cyclic base change, and some group theory. In this talk, we will discuss what goes wrong when trying to apply the cyclic base change to attack general monomial Galois representations, and what one can do instead. In particular, we shall discuss how to derive Langlands reciprocity for any Galois representation whose image is either nearly nilpotent or "small'".