We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Reproducible research in R

Formal Metadata

Title
Reproducible research in R
Title of Series
Number of Parts
8
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language
Producer
Production PlaceWageningen

Content Metadata

Subject Area
Genre
Abstract
In this session, Facundo Muñoz (Cirad, France) describex tools and workflows to cumulatively improve the reproducibility of analyses performed in R. R is a mature, world-class, open-source statistical computing and data-analysis platform with a huge community of users from all areas of science and industry. Yet, most researchers rely only on its most basic scripting features, missing the opportunity to unleash its full potential, in particular concerning reproducible-research workflows. Specifically, we discuss encoding and platform-specific packages, the advantages of organising code into functions, using project-directories and relative paths, reproducible reports with RMarkdown, controlling package versions with Renv, organising code into a pipeline with targets, keeping track of changes from various collaborators with git, reproducibly publishing results with Continuous Integration in Git(Hu|La)b pages, reproducing the complete environment with docker, and controlling versions of the complete software stack with GNU Guix.
Keywords